Soit un nombre premier. Nous montrons dans cet article que l’addition en base sans retenue possède une définition récursive à l’instar des cas où et qui étaient déjà connus.
Let be a prime number. In this paper we prove that the addition in -ary without carry admits a recursive definition like in the already known cases and .
@article{JTNB_1999__11_2_307_0, author = {Fran\c{c}ois Laubie}, title = {A recursive definition of $p$-ary addition without carry}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {307--315}, publisher = {Universit\'e Bordeaux I}, volume = {11}, number = {2}, year = {1999}, zbl = {0997.11013}, mrnumber = {1745881}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1999__11_2_307_0/} }
TY - JOUR AU - François Laubie TI - A recursive definition of $p$-ary addition without carry JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 307 EP - 315 VL - 11 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1999__11_2_307_0/ LA - en ID - JTNB_1999__11_2_307_0 ER -
François Laubie. A recursive definition of $p$-ary addition without carry. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 2, pp. 307-315. https://jtnb.centre-mersenne.org/item/JTNB_1999__11_2_307_0/
[1] Nim, a game with a complete mathematical theory. Ann. Math. Princeton 3 (1902), 35-39. | JFM | MR
,[2] Lexicographic Codes, Error Corrrecting Codes from Game Theory. IEEE Trans. Inform. Theory 32 (1986), 337-348. | MR | Zbl
, ,[3] Sumsets in vector spaces over finite fields. J. Number Theory 71 (1998), 12-39. | MR | Zbl
, ,[4] On linear greedy codes. to appear.
,[5] Nim Multiplication. Séminaire de Théorie des Nombres de Bordeaux 1977-78, exposé 11, (1978). | MR | Zbl
,[6] A class of Systematic Codes. Soviet Math Dokl. 1 (1960), 368-371. | MR | Zbl
,[7] N-person Nim and N-person Moore's Games. Int. J. Game Theory 7 (1978), 31-36. | MR | Zbl
,[8] A generalization of the Game called Nim. Ann. Math. Princeton 11 (1910), 93-94. | JFM | MR
,