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A recursive definition of p-ary addition without

carry

par FRANÇOIS LAUBIE

RÉSUMÉ. Soit p un nombre premier. Nous montrons dans cet
article que l’addition en base p sans retenue possède une définition
récursive à l’instar des cas où p = 2 et p = 3 qui étaient deja
connus.

ABSTRACT. Let p be a prime number. In this paper we prove that
the addition in p-ary without carry admits a recursive definition
like in the already known cases p = 2 and p = 3.

1. INTRODUCTION

Let p be a prime number. For any two natural integers a and b, let us
denote by a +p b the natural integer obtained writing a and b in p-ary and
then adding them without carry.

In the case where p = 2, this operation called nim-addition, plays a crucial
role in the theory of some games [1] and in the theory of lexicographic codes
of Levenstein [6], Conway and Sloane [2]. The map (a, b) H a +2 b is the
Grundy function of the directed graph whose vertices are the pairs (a, b)
of natural integers and arcs the pairs of vertices ((a’, b’), (a, b)) such that
either a’  a and b’ = b or a~’ = a and b’  b. Therefore the nim-addition
can be defined recursively as follows:

Thus the nim-addition is the first regular law on N in the sense that, given
all a’ +2 b and a +2 b’ with a’  a and b’  b, a +2 b is the smallest natural
integer which is not excluded by the rule:

Surprisingly, it is a group law on N.
For any prime number p &#x3E; 3, the addition +p takes place in the theory

of some generalized nim-games ~7~, [8] and also in the theory of some greedy
codes [4]. Moreover this addition plays a crucial role in the recent deter-
mination of the least possible size of the sumset of two subsets of 
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with given cardinalities (S. Eliahou, M. Kervaire, [3]). In [5] H.W. Lenstra
announced the following formula due to S. Norton:

and he asked the question if such a recursive definition exists for -I-p when-
ever p is a prime number.
The aim of this paper is to answer positively. This answer provides us

with a definition "a la Conway" of prime numbers.

2. THE -I-p-ADDITION TABLE AS A GRAPH

Let lFp be the finite field with p elements; for A E Fp, let A be the
representative number of the class A belonging to {0,1, - " p -1~ and, for
a E N, define A.pa= a -p a = a +p a +p w +p a with a terms a.
The operations +p and -p provide N with a structure of Fp-vector space

isomorphic to the IFp-vector space of polynomials 
We define a directed graph!gp as follows:

- the set of its vertices is N x N,
- the arcs of gp are the pairs of vertices ( (a’, b’ ), (a, b) ) such that
-aa 6’  6,- a - a, -,

- a’ = b +p ( 1- a) -p r for some r E and A e Fp .
The graph gp does not admit circuit; thus the Grundy function of ~p is

the unique map g of N x N-N such that:

Proposition 1. The Grundy function of Gp is the addition map: (a, b) H
a +p b.

First of all, we give some lemmas on the natural ordering of the repre-
sentative set {0,1,’" p - 1} of Fp . It is sometimes more convenient to

express them in terms of the following ordering on Fp:

where ü (resp. v) is the representative number of u E Fp (resp. v E Fp)
belonging to {0,1," - ip - 1}-
Lemma 1. For all u, v E Fp 2

Thus

Lemma 2. Let u, r, s be elements of Fp such that r ~ s and u + r - u.
Then r - r - s and u + r 2013 ~ ~ u.
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Lemma 3. Let u, v, r be elements o, f IFp such that u - u + r, v - v + r and
u --i- v -~- r ~ u -f- v. Then there E IFp such that s -~- t = r, u + s -~ u
and v + t - v.

Proof. Conditions:

are equivalent to:

Since v &#x3E; p - r with f  p - 1 - n, we have v Hence
&#x3E; max(fi,,b) + 1. Moreover n+~2013p~ ~T~. Therefore, by

Lemma l,M+~p20131 and the conditions (C) are equivalent to:

or, more simply, to: -f -1  p - r  u -f - v .
We are looking for s and t E I~p such that:

or equivalently such that:

with p = p - f, u = p - s and T = p - t. &#x3E;bbom the condition v ) 
+ v, it is clear that such integers a and r do exist. Thus the lemma

is proved. 0

Now, for any natural integer x, let a? be its class modulo p, let a~ =

Ei&#x3E;O Xipi with Xi E ~0,1, ~ ~ ~ , p - 11 its p-ary expansion, and let iz be
the largest index i &#x3E; 0 such that 0. In order to summarize all these

notations we set:
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Lemma 4. For all the following assertions are equivalent

Proof of Proposition 1. Let a, b be natural integers. For any natural integer
c  a +p b, there exists r E N* so that c = a +p b +p r. We will prove that
for any r E N* such that a +p b +p r  a +p b, there exists A E Fp such that
a +p A .p r  a and b +p (1 - A) .p r  b. With the notations of Lemma 4,
we have:

There exist s, t E Fp such that q - s + t, as,. + s -~ az,, and bzr -f - t ~ 
Let A = s E IFp ; then: s = Aq, t = ( 1 -- ~ ) rZr , q + « air and

+ ( 1 - ^)TZr ~ bz,. ; in other words : a +p A .p r  a and  v

(Lemma 4).
Therefore a +p b = min(NBEp) where Ep is the set of all the natural

integers a’ +p b’ with a’  a, b’  b and such that there exist A E 1Fp and
r E N* satisfying a’ = a +p A -p r, b’ = b +p ( 1 - A) -p r. This means that
(a, b) H a +p b is the Grundy function of gp . 0

Corollary. (S. Eliahou, M. Kervaire [3]) - Let us denote by [0, a] the inter-
val ~a’  a~ , for a E Then for all a, b E ~1 there exists c  a + b
such that ~0, a~ +p [0, b] = [0, c~ .
Proof. Let c = max([O, a] +p [0, b]) and let a, bl :5 b such that c =

al +p bl. For all d  c there exist A E IFp and r E N* such that d =
A .p a, +p ( 1 - A) -p bi, A -p ai  al and ( 1 - A) p bl  bl ; therefore

d E ~~ ~ a~ +p ~~ ~ b~ - D

Remark. With the notations of the proof of Proposition 1, we have:
1. E2 = {a +2 b’, a’ +2 b ; a’  a, b’  &#x26;},
2. E3 - {a +3 b’, a’ +3 b ; a’  a, b’  b~ U fall +3 b", a"  a, b" 

b, a +3 b" = a" +3 6} because in this case, A = 0 or A = 1 or A = 1 - A.
3. In the case where p &#x3E; 5, the situation is a little more complicated

because the formula a +p b = will be effectively recursive
, only when we can describe the set Ep using only pairs (a, #) E N x N

with a  a, ,Ci  b and (a,,C3) # (a, b).

3. A RECURSIVE EXCLUSION ALGORITHM FOR a +p b

Given a prime number p and a pair (a, b) of natural integers, we will
describe a rule that excludes for the calculation of a +p b all the natural
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integers of the kind a’ +p b’ ~ a +p b with a’  a and b’  b without using
any pair of integers (a", b") such that a" &#x3E; a or b" &#x3E; b.

For all S C N, S* means S)(0).
Let J~I and N be two finite sets of natural integers such that n N =

~0,1~ and let and (bn)nEN be two sequences of natural integers
(respectively indexed by ,Nl and JU) satisfying the conditions:
-ao=a~bo=b~
- al +p b = a +p bl7
- V(m,n) E M* x N*, am  a, bn  b,
- dm E E J~I * such that and am +p b =

ak +p bm-k ~ &#x3E;

- Vn E E N* such and a +p bn =

+p bl.
Such a pair of sequences (bn)nEN) is called a p-chain of (a, b)

of length card J1~! * + card N* .

Remark. 1- The p-chains of (a, b) of length 2 are the pairs lb, 
with a,  a, b1  b and a +p bl = a, +p b (see the formula of S. Norton in
the introduction).

2 - For a p-chain of (a, b) of length &#x3E; 3, we have a2 +p b = al +p b, or
a +p b2 = a, +p bi, a3 +p b = a2 +p bl provided that (a2, bl ) lies in the

p-chain, or a3 +p b = al +p b2 provided that (a1, b2) lies in the p-chain.
For convenience we extend our definition to length 1 p-chain of (a, b): it

is the pairs (a, or (la, a, 1, b) with al  a, b¡  b.
A p-chain (a, b) is called a p-exclusion chain for

a +p b (or of (a, b)) if V n E U N*, 
Finally the set of all integers a’ +p b’ where (a’, b’) belongs to any p-

exclusion chain for a +p b of length  p -1 is called the p-exclusion set for
a +p b (or of (a, b)); it’s denoted by Ep(a, b).
We will prove:

Theorem. ((a’, b’), (a, b)) is an arc of gp if and only if there exists a p-
exclusion chain for a +p b of p -1 containing (a’, b’). In other

words : a +p b = b)).
Lemma 5. Let (bn)nEN) be a p-chain of (a, b) of length &#x3E; 2.
There exists r E ~1* such that am = a +p rn .p r and bn = b +p n .p r for all
(m, n) E x Jlf. Thus if ptm + n then am +p bn = a +p b.

Proof. Let r E N* such that al = a +p r; then a +p bi = al +p b = a +p r +p b,
therefore bl - b +p r. Suppose that for any k E and I E N with
1  k  m - l and 1  ~  r~ - l we have ak = a +p k ~p r and bt = 
then there exists ko E J~l such that and

= a +p ko .p r +p b +p (m - ko) .p r = a +p b +p m .p r.
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Therefore am = a +p m .p r and the lemma is proved by recurrence. C7

Proposition 2. Let (bn)nEN) be a p-chairt of (a, b). Let (m, n)
E J1~ x ,N such then ((am, bn), (a, b)) is an arc of Qp.

Proo f . - If the length of this chain is 1, this is clear; if not, let r E N* such
that am = a+pm~pr and bn = b+pn~pr (Lemma 5). Let IA be the class

modulo p of m + n. then a,~ = a (Lemma 5) and ((a~, bn), (a, b)) is
an arc of gp since bn  b. If pf m and + n, let A E Fp (A 7~ 0, 1) be the
class modulo p of ~+n then m -p r = A -p ~ and n -P r = (1- A) -p s where
s = p .p r. Thus ( (a~,, bn ), (a, b) ) is an arc of C7

We just proved that if ((am)mEM, (bn)nEN) is a p-exclusion chain for
a +p b then, for every (m, n) E x N*, 7 ((am, bn), (a, b)) is an arc of Gp.
Now, in order to prove the converse, we will describe an algorithm looking
like the Euclid algorithm for the gcd.

Let uo, such that uo 0 vo. Define vi E IF# as follows:
. - ... ,

Lemma 6. There is an integer N  p - 2 such that uN = VN.

Proof. If un 0 vn then un+1 + = min(un, i vn); moreover if un « Vn
then un « un - vn = (Lemma 2) and un vn+1(= vn); therefore
min(un,vn) - mk(un+i, vn+i) and the sequence is strictly
increasing as long as vn-,. Thus:

min( 11,0, vo) - min(u1, vl) -~ ... ~ min(UN-1, UN = VN

where N = 1 + maxf k E N Ul, 34 Finally N  p - 2 because
min( uo, vo) =1= 0. 0

Let w = UN = vN E K and define two increasing sequences of natural
integers and follows:

1
- if vN-n then + vn and vn,
- if uN-n then and vn+1 = Jln + vn.

Setting M 1  ~ 

N + 1 ~ we get by iteration:

Lemma 7. V p E 3p,’ E  

V v E 3v’ E  ~ ~ - ~ E M -

Lemma 8. For 1  n  N + 1, pnw = and vnw = 
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Proof. = uN, vlzu = VN and for 1  n  N, we have either uN-n =
+ and VN-n = VN-n+17 or and 

uN-n+l + · The lemma follows by recurrence. 0

Lemma 9. For 1  n  N + 1, ptiln 

Proof. Obvious by the preceding lemma. D

Lemma 10. CardM* + CardN* 

Proof. For 1  n  N7Un+Vn = therefore the sequence
((Itn is strictly decreasing in for the ordering -~. Moreover
CardM* + CardN* = Card(fwl U + vn)w ; 1  n  NJ). D

Now we can complete the
Proof of the theorem. Let ( (a’, b’), (a, b) ) be an arc of gp with a’ = a +p
A .p r  a, b’ = b +p (1 - A) -p r  b, A E 1Fp , r E I~’’‘ . We will construct a

p-exclusion chain for a +p b, containing (a’, b’), of length  p -1.
If A = 0 or 1 there exists such an obvious chain of length 1.
If A = 1 7 (p ~ 3), is such a p-exclusion chain of length 2

for a +p b.
Now we suppose that A # 0,1, and therefore that p &#x3E; 5. Writing

r = p-ary, let us recall that ir denotes the largest index i
such that rir ~ 0. Let uo - Aq E vo = (1 - A)F,7,- E JB;; then
uo + 0 and uo - 0. So we can construct as above the sequences

with w, the increasing sequences of
integers with P,1 = v1 - 1 and their associated

1nN-~-1~.
Lemma 11. The equality ILN+1(1 - À) = vN+iA holds in 1F’‘p .
Proof. By Lemma 8, IIN+LW = uo - Àrir and vn+lw = vo = (1 - À)rir
with ~.u # 0 and q ~ 0. 0

Thus there exists a unique natural integer R such that R = a -p r
and vN+1 -p R = (1 - A) .p r.

Lemma 12. Rïr = w.

Proof. = up = Xrir 0

For every (p, v) E M x let a~ = and bv = b +p v .p R.
Lemma 13. For every (p, v) E x .IV*, a~  a and bp.  b.
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a+pliNPR  a and b +p vN -p R  b (Lemma 4).
Then we complete the proof by recurrence. C7

Now clearly a p-chain of (a, b) (Lemmas 7 and 13),
containing (a’, b’) (Lemma 11), of length  p - 1 (Lemma 10), which is a
p-exclusion chain for a +p b (Lemma 9).

Remark. 1. In the cases where p = 2 or 3, every p-chain of (a, b) of
length  p - 1 is a p-exclusion chain for a +p b.

2. In the case where p = 5, a 5-chain of length 4 is not necessarily a
5-exclusion chain; we can however write a complete readable formula
of the same kind as Norton’s formula for p = 3: let a, b E N; a’, a", a"’
(resp. b’, b", b"’) are variables taking their values in {0,1, -", a - 1}
(resp. {0,1, -" , b - 1); let us consider the sets:

r .  1

Then a +5 b = U S2 U S3 U S4).
3. Given a natural integer v &#x3E; 2 not necessarily prime and two natural

numbers a, b, let us generalize the definition of the p-exclusion set
Ep(a, b) of (a, b) replacing p by v in the previous definition.

Thus a v-exclusion chain (bn)nEN) of (a,b) is of length
 v - 1 and such that V m E ,M*, V n E N*, vf m and Then

setting a *, b = min(NBEv (a, b)), *v is a group law on N if and only if
v is a prime number.

Proof. In fact if v is a composite number then *v is not an associative
law. Let d be a proper divisor of v; the following equalities hold:

exclusion chain oflength  Therefore: ((v-d)*v(d-1))*"1 = 0
and: (v - d) *" ((d - 1) *w 1) = v. 0

4. If we replace in the definition of *£1 the previous conditions (m, n) E
M* x N* v t m and by v is relatively prime to m and n, then
we get *v = +p where p is the smallest prime divisor of v.
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