FRANÇOIS LAUBIE A recursive definition of *p*-ary addition without carry

Journal de Théorie des Nombres de Bordeaux, tome 11, n° 2 (1999), p. 307-315

<http://www.numdam.org/item?id=JTNB_1999__11_2_307_0>

© Université Bordeaux 1, 1999, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A recursive definition of *p*-ary addition without carry

par FRANÇOIS LAUBIE

RÉSUMÉ. Soit p un nombre premier. Nous montrons dans cet article que l'addition en base p sans retenue possède une définition récursive à l'instar des cas où p = 2 et p = 3 qui étaient déjà connus.

ABSTRACT. Let p be a prime number. In this paper we prove that the addition in p-ary without carry admits a recursive definition like in the already known cases p = 2 and p = 3.

1. INTRODUCTION

Let p be a prime number. For any two natural integers a and b, let us denote by $a +_p b$ the natural integer obtained writing a and b in p-ary and then adding them without carry.

In the case where p = 2, this operation called nim-addition, plays a crucial role in the theory of some games [1] and in the theory of lexicographic codes of Levenstein [6], Conway and Sloane [2]. The map $(a,b) \mapsto a +_2 b$ is the Grundy function of the directed graph whose vertices are the pairs (a,b)of natural integers and arcs the pairs of vertices ((a',b'),(a,b)) such that either a' < a and b' = b or a' = a and b' < b. Therefore the nim-addition can be defined recursively as follows:

$$a +_2 b = \min(\mathbb{N} \setminus \{a' +_2 b, a +_2 b'; a' < a, b' < b\}).$$

Thus the nim-addition is the first regular law on \mathbb{N} in the sense that, given all $a' +_2 b$ and $a +_2 b'$ with a' < a and b' < b, $a +_2 b$ is the smallest natural integer which is not excluded by the rule:

$$a +_2 b = a' +_2 b \Longrightarrow a = a' \text{ or } a +_2 b = a +_2 b' \Longrightarrow b = b'.$$

Surprisingly, it is a group law on \mathbb{N} .

For any prime number $p \geq 3$, the addition $+_p$ takes place in the theory of some generalized nim-games [7], [8] and also in the theory of some greedy codes [4]. Moreover this addition plays a crucial role in the recent determination of the least possible size of the sumset of two subsets of $(\mathbb{Z}/p\mathbb{Z})^N$

Manuscrit reçu le 11 mars 1998.

with given cardinalities (S. Eliahou, M. Kervaire, [3]). In [5] H.W. Lenstra announced the following formula due to S. Norton:

$$a+_{3}b=\min(\mathbb{N}\setminus(\{a'+_{3}b,a+_{3}b'\,;\,a'< a,b'< b\}\cup \ \{a''+_{3}b'',a''< a,b''< b,a''+_{3}b=a+_{3}b''\}))$$

and he asked the question if such a recursive definition exists for $+_p$ whenever p is a prime number.

The aim of this paper is to answer positively. This answer provides us with a definition "à la Conway" of prime numbers.

2. The $+_p$ -addition table as a graph

Let \mathbb{F}_p be the finite field with p elements; for $\lambda \in \mathbb{F}_p$, let $\overline{\lambda}$ be the representative number of the class λ belonging to $\{0, 1, \dots, p-1\}$ and, for $a \in \mathbb{N}$, define $\lambda \cdot_p a = \overline{\lambda} \cdot_p a = a +_p a +_p \dots +_p a$ with $\overline{\lambda}$ terms a.

The operations $+_p$ and \cdot_p provide \mathbb{N} with a structure of \mathbb{F}_p -vector space isomorphic to the \mathbb{F}_p -vector space of polynomials $\mathbb{F}_p[X]$.

We define a directed graph \mathcal{G}_p as follows:

- the set of its vertices is $\mathbb{N} \times \mathbb{N}$,

- the arcs of \mathcal{G}_p are the pairs of vertices ((a', b'), (a, b)) such that
 - $-a' \leq a, b' \leq b,$

 $-a' = a +_p \lambda \cdot_p r, \, b' = b +_p (1 - \lambda) \cdot_p r \text{ for some } r \in \mathbb{N}^* \text{ and } \lambda \in \mathbb{F}_p.$

The graph \mathcal{G}_p does not admit circuit; thus the Grundy function of \mathcal{G}_p is the unique map g of $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that:

 $g((a,b)) = \min(\mathbb{N} \setminus \{g((a',b')) ; ((a',b'),(a,b)) \text{ is an arc of } \mathcal{G}_p\}).$

Proposition 1. The Grundy function of \mathcal{G}_p is the addition map: $(a, b) \mapsto a +_p b$.

First of all, we give some lemmas on the natural ordering of the representative set $\{0, 1, \dots, p-1\}$ of \mathbb{F}_p . It is sometimes more convenient to express them in terms of the following ordering on \mathbb{F}_p :

$$u \prec v \Longleftrightarrow ilde{u} < ilde{v}$$

where \tilde{u} (resp. \tilde{v}) is the representative number of $u \in \mathbb{F}_p$ (resp. $v \in \mathbb{F}_p$) belonging to $\{0, 1, \dots, p-1\}$.

Lemma 1. For all $u, v \in \mathbb{F}_p$,

$$\widetilde{u+v} = ilde{u} +_p ilde{v} = \left\{egin{array}{cc} ilde{u} + ilde{v} & ext{if} & ilde{u} + ilde{v} \leq p-1, \ ilde{u} + ilde{v} - p & ext{if} & ilde{u} + ilde{v} \geq p. \end{array}
ight.$$

Thus $u + v \prec u \iff \tilde{u} + \tilde{v} \ge p \iff u + v \prec v$.

Lemma 2. Let u, r, s be elements of \mathbb{F}_p such that $r \prec s$ and $u + r \prec u$. Then $r \prec r - s$ and $u + r - s \prec u$.

$$\begin{array}{l} Proof. \ \tilde{r} < \tilde{s} \Longrightarrow \widetilde{r-s} = p + \tilde{r} - \tilde{s} > \tilde{r} \Longrightarrow r \prec r-s ;\\ \tilde{u} + \widetilde{r-s} = \tilde{u} + \tilde{r} + p - \tilde{s} > \tilde{u} + \tilde{r} \ge p \Longrightarrow u + r - s \prec u. \end{array}$$

Lemma 3. Let u, v, r be elements of \mathbb{F}_p such that $u \prec u + r, v \prec v + r$ and $u + v + r \prec u + v$. Then there exist $s, t \in \mathbb{F}_p$ such that $s + t = r, u + s \prec u$ and $v + t \prec v$.

Proof. Conditions:

(C)
$$\begin{cases} u+v+r \prec u+v, \\ u \prec u+r, \\ v \prec v+r, \end{cases}$$

are equivalent to:

$$\left\{ egin{array}{l} \widetilde{u+v}+ ilde{r}\geq p, \ \widetilde{u}+ ilde{r}\leq p-1, \ \widetilde{v}+ ilde{r}\leq p-1. \end{array}
ight.$$

Since $\widetilde{u+v} \ge p - \tilde{r}$ with $\tilde{r} \le p - 1 - \tilde{u}$, we have $\widetilde{u+v} \ge \tilde{u} + 1$. Hence $\widetilde{u+v} \ge \max(\tilde{u}, \tilde{v}) + 1$. Moreover $\tilde{u} + \tilde{v} - p < \tilde{u} < u+v$. Therefore, by Lemma 1, $\tilde{u} + \tilde{v} \le p - 1$ and the conditions (C) are equivalent to:

$$\left\{ egin{array}{ccccc} p- ilde{u}- ilde{v}&\leq& ilde{r}&\leq&p-1,\ 1&\leq& ilde{r}&\leq&p-1- ilde{u},\ 1&\leq& ilde{r}&\leq&p-1- ilde{v}, \end{array}
ight.$$

or, more simply, to: $\max(\tilde{u}, \tilde{v}) + 1 \leq p - \tilde{r} \leq \tilde{u} + \tilde{v}$.

We are looking for s and $t \in \mathbb{F}_p$ such that:

$$\begin{cases} s+t &= r \\ u+s &\prec u \\ v+t &\prec v \end{cases}$$

or equivalently such that:

$$\left\{ egin{array}{l} \sigma+ au=
ho,\ 1\leq\sigma\leq ilde{u}\leq p-1,\ 1\leq au\leq ilde{v}\leq p-1 \end{array}
ight.$$

with $\rho = p - \tilde{r}$, $\sigma = p - \tilde{s}$ and $\tau = p - \tilde{t}$. >From the condition $1 + \max(\tilde{u}, \tilde{v}) \le \rho \le \tilde{u} + \tilde{v}$, it is clear that such integers σ and τ do exist. Thus the lemma is proved.

Now, for any natural integer x, let \bar{x} be its class modulo p, let $x = \sum_{i\geq 0} x_i p^i$ with $x_i \in \{0, 1, \dots, p-1\}$ its *p*-ary expansion, and let i_x be the largest index $i \geq 0$ such that $x_i \neq 0$. In order to summarize all these notations we set:

Lemma 4. For all $x, y \in \mathbb{N}$ the following assertions are equivalent

 $\begin{array}{l} (i) \ x+_p \ y < x, \\ (ii) \ x_{i_y}+_p \ y_{i_y} < x_{i_y}, \\ (iii) \ \overline{x_{i_y}}+\overline{y_{i_y}} \prec \overline{x_{i_y}}, \\ (iv) \ x_{i_y}+y_{i_y} \ge p. \end{array}$

Proof of Proposition 1. Let a, b be natural integers. For any natural integer $c < a +_p b$, there exists $r \in \mathbb{N}^*$ so that $c = a +_p b +_p r$. We will prove that for any $r \in \mathbb{N}^*$ such that $a +_p b +_p r < a +_p b$, there exists $\lambda \in \mathbb{F}_p$ such that $a +_p \lambda \cdot_p r \leq a$ and $b +_p (1 - \lambda) \cdot_p r \leq b$. With the notations of Lemma 4, we have:

$$\begin{array}{rcl} a+_pb+_pr < a+_pb & \Longleftrightarrow & a_{i_r}+b_{i_r}+r_{i_r} \prec a_{i_r}+b_{i_r}, \\ a < a+_pr & \Longleftrightarrow & \overline{a_{i_r}} \prec \overline{a_{i_r}+r_{i_r}}, \\ b < b+_pr & \Longleftrightarrow & \overline{b_{i_r}} \prec \overline{b_{i_r}+r_{i_r}}. \end{array}$$

There exist $s, t \in \mathbb{F}_p$ such that $\overline{r_{i_r}} = s + t$, $\overline{a_{i_r}} + s \prec \overline{a_{i_r}}$ and $\overline{b_{i_r}} + t \prec \overline{b_{i_r}}$. Let $\lambda = s \ \overline{r_{i_r}}^{-1} \in \mathbb{F}_p$; then: $s = \lambda \overline{r_{i_r}}, t = (1 - \lambda)\overline{r_{i_r}}, \overline{a_{i_r}} + \lambda \overline{r_{i_r}} \prec \overline{a_{i_r}}$ and $\overline{b_{i_r}} + (1 - \lambda)\overline{r_{i_r}} \prec \overline{b_{i_r}}$; in other words : $a + p \lambda \cdot p r < a$ and $b + p (1 - \lambda) \cdot p r < v$ (Lemma 4).

Therefore $a +_p b = \min(\mathbb{N}\setminus E_p)$ where E_p is the set of all the natural integers $a' +_p b'$ with a' < a, b' < b and such that there exist $\lambda \in \mathbb{F}_p$ and $r \in \mathbb{N}^*$ satisfying $a' = a +_p \lambda \cdot_p r$, $b' = b +_p (1 - \lambda) \cdot_p r$. This means that $(a,b) \mapsto a +_p b$ is the Grundy function of \mathcal{G}_p .

Corollary. (S. Eliahou, M. Kervaire [3]) - Let us denote by [0, a] the interval $\{a' \in \mathbb{N} ; a' \leq a\}$ for $a \in \mathbb{N}$. Then for all $a, b \in \mathbb{N}$ there exists $c \leq a + b$ such that $[0, a] +_p [0, b] = [0, c]$.

Proof. Let $c = \max([0, a] +_p [0, b])$ and let $a_1 \leq a, b_1 \leq b$ such that $c = a_1 +_p b_1$. For all d < c there exist $\lambda \in \mathbb{F}_p$ and $r \in \mathbb{N}^*$ such that $d = \lambda \cdot_p a_1 +_p (1 - \lambda) \cdot_p b_1$, $\lambda \cdot_p a_1 < a_1$ and $(1 - \lambda) \cdot_p b_1 < b_1$; therefore $d \in [0, a] +_p [0, b]$.

Remark. With the notations of the proof of Proposition 1, we have:

- 1. $E_2 = \{a + b', a' + b; a' < a, b' < b\},\$
- 2. $E_3 = \{a + b', a' + b; a' < a, b' < b\} \cup \{a'' + b'', a'' < a, b'' < b, a + b'' = a'' + b\}$ because in this case, $\lambda = 0$ or $\lambda = 1$ or $\lambda = 1 \lambda$.
- 3. In the case where $p \geq 5$, the situation is a little more complicated because the formula $a +_p b = \min(\mathbb{N} \setminus E_p)$ will be effectively recursive only when we can describe the set E_p using only pairs $(\alpha, \beta) \in \mathbb{N} \times \mathbb{N}$ with $\alpha \leq a, \beta \leq b$ and $(\alpha, \beta) \neq (a, b)$.

3. A RECURSIVE EXCLUSION ALGORITHM FOR $a +_p b$

Given a prime number p and a pair (a, b) of natural integers, we will describe a rule that excludes for the calculation of $a +_p b$ all the natural

310

integers of the kind $a' +_p b' \neq a +_p b$ with $a' \leq a$ and $b' \leq b$ without using any pair of integers (a'', b'') such that a'' > a or b'' > b.

For all $S \subset \mathbb{N}$, S^* means $S \setminus \{0\}$.

Let \mathcal{M} and \mathcal{N} be two finite sets of natural integers such that $\mathcal{M} \cap \mathcal{N} = \{0,1\}$ and let $(a_m)_{m \in \mathcal{M}}$ and $(b_n)_{n \in \mathcal{N}}$ be two sequences of natural integers (respectively indexed by \mathcal{M} and \mathcal{N}) satisfying the conditions:

$$-a_0=a, b_0=b,$$

 $- a_1 +_p b = a +_p b_1,$

 $- \forall (m,n) \in \mathcal{M}^* \times \mathcal{N}^*, a_m < a, b_n < b,$

 $eg \forall m \in \mathcal{M}^* \setminus \{1\}, \ \exists k \in \mathcal{M}^* \text{ such that } k < m, \ m-k \in \mathcal{N} \text{ and } a_m +_p b = a_k +_p \ b_{m-k},$

 $\quad \forall n \in \mathcal{N}^* \setminus \{1\}, \ \exists \ell \in \mathcal{N}^* \text{ such that } \ell < n, \ n - \ell \in \mathcal{M} \text{ and } a +_p b_n = a_{n-\ell} +_p b_{\ell}.$

Such a pair of sequences $((a_m)_{m \in \mathcal{M}}, (b_n)_{n \in \mathcal{N}})$ is called a *p*-chain of (a, b) of length card $\mathcal{M}^* + \text{ card } \mathcal{N}^*$.

Remark. 1 - The *p*-chains of (a, b) of length 2 are the pairs $(\{a, a_1\}, \{b, b_1\})$ with $a_1 < a, b_1 < b$ and $a +_p b_1 = a_1 +_p b$ (see the formula of S. Norton in the introduction).

2 - For a p-chain of (a, b) of length ≥ 3 , we have $a_2 + b_p = a_1 + b_1$ or $a + b_2 = a_1 + b_1$, $a_3 + b_2 = a_2 + b_1$ provided that (a_2, b_1) lies in the p-chain, or $a_3 + b_2 = a_1 + b_2$ provided that (a_1, b_2) lies in the p-chain.

For convenience we extend our definition to length 1 *p*-chain of (a, b): it is the pairs $(a, \{b, b_1\})$ or $(\{a, a_1\}, b)$ with $a_1 < a, b_1 < b$.

A *p*-chain $((a_m)_{m \in \mathcal{M}}, (b_n)_{n \in \mathcal{N}})$ of (a, b) is called a *p*-exclusion chain for $a +_p b$ (or of (a, b)) if $\forall n \in \mathcal{M}^* \cup \mathcal{N}^*, p \nmid n$.

Finally the set of all integers $a' +_p b'$ where (a', b') belongs to any *p*-exclusion chain for $a +_p b$ of length $\leq p - 1$ is called the *p*-exclusion set for $a +_p b$ (or of (a, b)); it's denoted by $E_p(a, b)$.

We will prove:

Theorem. ((a',b'),(a,b)) is an arc of \mathcal{G}_p if and only if there exists a pexclusion chain for $a +_p b$ of length $\leq p-1$ containing (a',b'). In other words : $a +_p b = \min(\mathbb{N} \setminus E_p(a,b))$.

Lemma 5. Let $((a_m)_{m \in \mathcal{M}}, (b_n)_{n \in \mathcal{N}})$ be a p-chain of (a, b) of length ≥ 2 . There exists $r \in \mathbb{N}^*$ such that $a_m = a + p m \cdot p r$ and $b_n = b + p n \cdot p r$ for all $(m, n) \in \mathcal{M} \times \mathcal{N}$. Thus if p|m + n then $a_m + p b_n = a + p b$.

Proof. Let $r \in \mathbb{N}^*$ such that $a_1 = a + pr$; then $a + pb_1 = a_1 + pb = a + pr + pb$, therefore $b_1 = b + pr$. Suppose that for any $k \in \mathcal{M}$ and $\ell \in \mathcal{N}$ with $1 \leq k \leq m-1$ and $1 \leq \ell \leq n-1$ we have $a_k = a + pk \cdot pr$ and $b_\ell = b + p\ell \cdot pr$, then there exists $k_0 \in \mathcal{M}$ such that $1 \leq k_0 \leq m-1$, $m - k_0 \in \mathcal{N}$ and

 $a_m +_p b = a_{k_0} +_p b_{m-k_0} = a +_p k_0 \cdot_p r +_p b +_p (m-k_0) \cdot_p r = a +_p b +_p m \cdot_p r.$

FRANÇOIS LAUBIE

Therefore $a_m = a + p m \cdot p r$ and the lemma is proved by recurrence.

Proposition 2. Let $((a_m)_{m \in \mathcal{M}}, (b_n)_{n \in \mathcal{N}})$ be a p-chain of (a, b). Let $(m, n) \in \mathcal{M} \times \mathcal{N}$ such that $p \nmid m + n$, then $((a_m, b_n), (a, b))$ is an arc of \mathcal{G}_p .

Proof. - If the length of this chain is 1, this is clear; if not, let $r \in \mathbb{N}^*$ such that $a_m = a + {}_p m \cdot {}_p r$ and $b_n = b + {}_p n \cdot {}_p r$ (Lemma 5). Let $\mu \in \mathbb{F}_p^*$ be the class modulo p of m + n. If $p \mid m$ then $a_m = a$ (Lemma 5) and $((a_m, b_n), (a, b))$ is an arc of \mathcal{G}_p since $b_n < b$. If $p \nmid m$ and $p \nmid m + n$, let $\lambda \in \mathbb{F}_p$ ($\lambda \neq 0, 1$) be the class modulo p of $\frac{m}{m+n}$ then $m \cdot {}_p r = \lambda \cdot {}_p s$ and $n \cdot {}_p r = (1 - \lambda) \cdot {}_p s$ where $s = \mu \cdot {}_p r$. Thus $((a_m, b_n), (a, b))$ is an arc of \mathcal{G}_p .

We just proved that if $((a_m)_{m \in \mathcal{M}}, (b_n)_{n \in \mathcal{N}})$ is a *p*-exclusion chain for $a +_p b$ then, for every $(m, n) \in \mathcal{M}^* \times \mathcal{N}^*$, $((a_m, b_n), (a, b))$ is an arc of \mathcal{G}_p . Now, in order to prove the converse, we will describe an algorithm looking like the Euclid algorithm for the gcd.

Let $u_0, v_0 \in \mathbb{F}_p^*$ such that $u_0 \neq v_0$. Define $u_1, v_1 \in \mathbb{F}_p^*$ as follows: - if $u_0 \prec v_0$ then $u_1 = u_0 - v_0$ and $v_1 = v_0$, - if $v_0 \prec u_0$ then $u_1 = u_0$ and $v_1 = v_0 - u_0$. Then as long as $u_n \neq v_n$ we define $u_{n+1}, v_{n+1} \in \mathbb{F}_p^*$ as follows: - if $u_n \prec v_n$ then $u_{n+1} = u_n - v_n$ and $v_{n+1} = v_n$, - if $v_n \prec u_n$ then $u_{n+1} = u_n$ and $v_{n+1} = v_n - u_n$.

Lemma 6. There is an integer $N \leq p-2$ such that $u_N = v_N$.

Proof. If $u_n \neq v_n$ then $u_{n+1} + v_{n+1} = \min(u_n, v_n)$; moreover if $u_n \prec v_n$ then $u_n \prec u_n - v_n = u_{n+1}$ (Lemma 2) and $u_n \prec v_{n+1}(=v_n)$; therefore $\min(u_n, v_n) \prec \min(u_{n+1}, v_{n+1})$ and the sequence $(\min(u_n, v_n))$ is strictly increasing as long as $u_{n-1} \neq v_{n-1}$. Thus:

$$\min(u_0, v_0) \prec \min(u_1, v_1) \prec \cdots \prec \min(u_{N-1}, v_{N-1}) \prec u_N = v_N$$

where $N = 1 + \max\{k \in \mathbb{N} ; u_k \neq v_k\}$. Finally $N \leq p - 2$ because $\min(u_0, v_0) \neq 0$.

Let $w = u_N = v_N \in \mathbb{F}_p^*$ and define two increasing sequences of natural integers $(\mu_n)_{1 \le n \le N+1}$ and $(\nu_n)_{1 \le n \le N+1}$ as follows:

 $\mu_1 = \nu_1 = 1$ and for $1 \le n \le N$,

- if $u_{N-n} \prec v_{N-n}$ then $\mu_{n+1} = \mu_n + \nu_n$ and $\nu_{n+1} = \nu_n$,

- if $v_{N-n} \prec u_{N-n}$ then $\mu_{n+1} = \mu_n$ and $\nu_{n+1} = \mu_n + \nu_n$.

Setting $\mathcal{M} = \{0\} \cup \{\mu_n ; 1 \le n \le N+1\}$ and $\mathcal{N} = \{0\} \cup \{\nu_n ; 1 \le n \le N+1\}$ we get by iteration:

Lemma 7. $\forall \mu \in \mathcal{M}^* \setminus \{1\}, \exists \mu' \in \mathcal{M}^*, \mu' < \mu, \mu - \mu' \in \mathcal{N}.$ $\forall \nu \in \mathcal{N}^* \setminus \{1\}, \exists \nu' \in \mathcal{N}^*, \nu' < \nu, \nu - \nu' \in \mathcal{M}.$

Lemma 8. For $1 \le n \le N+1$, $\mu_n w = u_{N-n+1}$ and $\nu_n w = v_{N-n+1}$.

Proof. $\mu_1 w = u_N$, $\nu_1 w = v_N$ and for $1 \le n \le N$, we have either $u_{N-n} = u_{N-n+1} + v_{N-n+1}$ and $v_{N-n} = v_{N-n+1}$, or $u_{N-n} = u_{N-n+1}$ and $v_{N-n} = u_{N-n+1} + v_{N-n+1}$. The lemma follows by recurrence.

Lemma 9. For
$$1 \leq n \leq N+1$$
, $p \nmid \mu_n$ and $p \nmid \nu_n$.

Proof. Obvious by the preceding lemma.

Lemma 10. $\operatorname{Card} \mathcal{M}^* + \operatorname{Card} \mathcal{N}^* = N + 1 \leq p - 1.$

Proof. For $1 \leq n \leq N$, $u_n + v_n = \min(u_{n-1}, v_{n-1})$, therefore the sequence $((\mu_n + \nu_n)w)_{1 \leq n \leq N}$ is strictly decreasing in \mathbb{F}_p^* for the ordering \prec . Moreover $\operatorname{Card}\mathcal{M}^* + \operatorname{Card}\mathcal{N}^* = \operatorname{Card}(\{w\} \cup \{(\mu_n + \nu_n)w; 1 \leq n \leq N\})$. \Box

Now we can complete the

Proof of the theorem. Let ((a',b'), (a,b)) be an arc of \mathcal{G}_p with $a' = a +_p \lambda \cdot_p r < a, b' = b +_p (1-\lambda) \cdot_p r < b, \lambda \in \mathbb{F}_p, r \in \mathbb{N}^*$. We will construct a *p*-exclusion chain for $a +_p b$, containing (a',b'), of length $\leq p-1$.

If $\lambda = 0$ or 1 there exists such an obvious chain of length 1.

If $\lambda = \frac{1}{2}$, $(p \ge 3)$, $(\{a, a'\}, \{b, b'\})$ is such a *p*-exclusion chain of length 2 for a + b.

Now we suppose that $\lambda \neq 0, 1, \frac{1}{2}$ and therefore that $p \geq 5$. Writing $r = \sum_{i\geq 0} r_i p^i$ in *p*-ary, let us recall that i_r denotes the largest index *i* such that $r_{i_r} \neq 0$. Let $u_0 = \lambda \overline{r_{i_r}} \in \mathbb{F}_p^*$, $v_0 = (1-\lambda)\overline{r_{i_r}} \in \mathbb{F}_p^*$; then $u_0 + v_0 \neq 0$ and $u_0 - v_0 \neq 0$. So we can construct as above the sequences $(u_n)_{0\leq n\leq N}$, $(v_n)_{0\leq n\leq N}$ with $u_N = v_N = w$, the increasing sequences of integers $(\mu_n)_{1\leq n\leq N+1}$, $(\nu_n)_{1\leq n\leq N+1}$ with $\mu_1 = \nu_1 = 1$ and their associated sets $\mathcal{M} = \{0\} \cup \{\mu_n; 1\leq n\leq N+1\}$, $\mathcal{N} = \{0\} \cup \{\nu_n; 1\leq n\leq N+1\}$.

Lemma 11. The equality $\mu_{N+1}(1-\lambda) = \nu_{N+1}\lambda$ holds in \mathbb{F}_p^* .

Proof. By Lemma 8, $\mu_{N+1}w = u_0 = \lambda \overline{r_{i_r}}$ and $\nu_{N+1}w = v_0 = (1-\lambda)\overline{r_{i_r}}$ with $w \neq 0$ and $\overline{r_{i_r}} \neq 0$.

Thus there exists a unique natural integer R such that $\mu_{N+1} \cdot_p R = \lambda \cdot_p r$ and $\nu_{N+1} \cdot_p R = (1 - \lambda) \cdot_p r$.

Lemma 12. $\overline{R_{i_r}} = w$.

Proof.
$$\mu_{N+1}w = u_0 = \lambda \overline{r_{i_r}} = \mu_{N+1}\overline{R_{i_r}}$$
 with $p \nmid \mu_{N+1}$.
For every $(\mu, \nu) \in \mathcal{M} \times \mathcal{N}$, let $a_\mu = a +_p \mu \cdot_p R$ and $b_\nu = b +_p \nu \cdot_p R$.

Lemma 13. For every $(\mu, \nu) \in \mathcal{M}^* \times \mathcal{N}^*$, $a_{\mu} < a$ and $b_{\mu} < b$.

Proof.
$$a' = a +_p \lambda \cdot_p r < a \text{ and } b' = b +_p (1 - \lambda) \cdot_p r < b;$$

 $\Longrightarrow \overline{a_{i_r}} + u_0 \prec \overline{a_{i_r}} \text{ and } \overline{b_{i_r}} + v_0 \prec \overline{b_{i_r}} \text{ (Lemma 4)};$
 $\Longrightarrow \overline{a_{i_r}} + u_1 \prec \overline{a_{i_r}} \text{ and } \overline{b_{i_r}} + v_1 \prec \overline{b_{i_r}} \text{ (Lemma 2)};$
 $\Longrightarrow \overline{a_{i_r}} + \mu_N \overline{R_{i_r}} \prec \overline{a_{i_r}} \text{ and } \overline{b_{i_r}} + \nu_N \overline{R_{i_r}} \prec \overline{b_{i_r}} \text{ (Lemmas 8 and 12)};$

 $\implies a +_p \mu_N \cdot_p R < a \text{ and } b +_p \nu_N \cdot_p R < b \text{ (Lemma 4)}.$ Then we complete the proof by recurrence.

Now $((a_{\mu})_{\mu \in \mathcal{M}}, (b_{\nu})_{\nu \in \mathcal{N}})$ is clearly a *p*-chain of (a, b) (Lemmas 7 and 13), containing (a', b') (Lemma 11), of length $\leq p - 1$ (Lemma 10), which is a *p*-exclusion chain for $a +_p b$ (Lemma 9).

- **Remark.** 1. In the cases where p = 2 or 3, every *p*-chain of (a, b) of length $\leq p 1$ is a *p*-exclusion chain for a + p b.
 - 2. In the case where p = 5, a 5-chain of length 4 is not necessarily a 5-exclusion chain; we can however write a complete readable formula of the same kind as Norton's formula for p = 3: let $a, b \in \mathbb{N}$; a', a'', a''' (resp. b', b'', b''') are variables taking their values in $\{0, 1, \dots, a-1\}$ (resp. $\{0, 1, \dots, b-1\}$); let us consider the sets:

$$S_{1}(a,b) = \{a' + 5b\}$$

$$S_{2}(a,b) = \{a' + 5b'; a' + 5b = a + 5b'\}$$

$$S_{3}(a,b) = \{a' + 5b''; \exists b', a + 5b' = a' + 5b, a + 5b'' = a' + 5b'\}$$

$$S_{4}(a,b) = \{a' + 5b'''; \exists b'', a' + 5b'' \in S_{3}(a,b), a + 5b''' = a' + 5b''\}$$

$$\cup \{a' + 5b'''; \exists a'', b', (a', b') \in S_{2}(a, b), a'' + 5b'' \in S_{3}(a, b), a + 5b''' = a'' + 5b''\}$$
and let $S_{i} = S_{i}(a,b) \cup S_{i}(b,a)$, for $i = 1, 2, 3, 4$.

Then $a +_5 b = \min \mathbb{N} \setminus (S_1 \cup S_2 \cup S_3 \cup S_4)$.

3. Given a natural integer $\nu \geq 2$ not necessarily prime and two natural numbers a, b, let us generalize the definition of the *p*-exclusion set $E_p(a,b)$ of (a,b) replacing p by ν in the previous definition.

Thus a ν -exclusion chain $((a_m)_{m \in \mathcal{M}}, (b_n)_{n \in \mathcal{N}})$ of (a, b) is of length $\leq \nu - 1$ and such that $\forall m \in \mathcal{M}^*, \forall n \in \mathcal{N}^*, \nu \nmid m$ and $\nu \nmid n$. Then setting $a *_{\nu} b = \min(\mathbb{N} \setminus E_{\nu}(a, b)), *_{\nu}$ is a group law on \mathbb{N} if and only if ν is a prime number.

Proof. In fact if ν is a composite number then $*_{\nu}$ is not an associative law. Let d be a proper divisor of ν ; the following equalities hold:

 $\begin{array}{l} (d-1) *_{\nu} 1 = d, \\ (\nu-1) *_{\nu} 1 = 0, \\ (\nu-d) *_{\nu} d' = \nu - (d-d') \text{ for all } d' < d \\ \text{and } (\nu-d) *_{\nu} d = \nu \text{ because } ((\nu-d, \nu-2d, \cdots, 0), (d, 0)) \text{ is a } \nu \text{-} \text{exclusion chain of length } \leq \nu - 1. \text{ Therefore: } ((\nu-d) *_{\nu} (d-1)) *_{\nu} 1 = 0 \\ \text{and: } (\nu-d) *_{\nu} ((d-1) *_{\nu} 1) = \nu. \end{array}$

4. If we replace in the definition of $*_{\nu}$ the previous conditions $(m, n) \in \mathcal{M}^* \times \mathcal{N}^* \Longrightarrow \nu \nmid m$ and $\nu \nmid n$ by ν is relatively prime to m and n, then we get $*_{\nu} = +_p$ where p is the smallest prime divisor of ν .

314

Acknowledgments. I thank T. Moreno and P. Segalas, students at the University of Limoges, for testing several algorithms in Turbo Pascal on a PC.

References

- C. L. Bouton, Nim, a game with a complete mathematical theory. Ann. Math. Princeton 3 (1902), 35-39.
- [2] J. H. Conway, N.J.A. Sloane, Lexicographic Codes, Error Correcting Codes from Game Theory. IEEE Trans. Inform. Theory 32 (1986), 337-348.
- [3] S. Eliahou, M. Kervaire, Sumsets in vector spaces over finite fields. J. Number Theory 71 (1998), 12-39.
- [4] F. Laubie, On linear greedy codes. to appear.
- [5] H. W. Lenstra, Nim Multiplication. Séminaire de Théorie des Nombres de Bordeaux 1977-78, exposé 11, (1978).
- [6] V. Levenstein, A class of Systematic Codes. Soviet Math Dokl. 1 (1960), 368-371.
- [7] S. Y. R. Li, N-person Nim and N-person Moore's Games. Int. J. Game Theory 7 (1978), 31-36.
- [8] E. H. Moore, A generalization of the Game called Nim. Ann. Math. Princeton 11 (1910), 93-94.
- François LAUBIE UPRESA CNRS 6090 et INRIA de Rocquencourt Département de Mathématiques Faculté des Sciences de Limoges 123, avenue Albert Thomas 87060 LIMOGES Cedex *E-mail* : laubie@unilim.fr