François Laubie

A recursive definition of p-ary addition without carry

Journal de Théorie des Nombres de Bordeaux, tome 11, nº 2 (1999), p. 307-315

http://www.numdam.org/item?id=JTNB_1999__11_2_307_0
© Université Bordeaux 1, 1999, tous droits réservés.
L'accès aux archives de la revue «Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

A recursive definition of p-ary addition without carry

par François LAUBIE

Résumé. Soit pun nombre premier. Nous montrons dans cet article que l'addition en base p sans retenue possède une définition récursive à l'instar des cas où $p=2$ et $p=3$ qui étaient déjà connus.

Abstract. Let p be a prime number. In this paper we prove that the addition in p-ary without carry admits a recursive definition like in the already known cases $p=2$ and $p=3$.

1. Introduction

Let p be a prime number. For any two natural integers a and b, let us denote by $a+_{p} b$ the natural integer obtained writing a and b in p-ary and then adding them without carry.

In the case where $p=2$, this operation called nim-addition, plays a crucial role in the theory of some games [1] and in the theory of lexicographic codes of Levenstein [6], Conway and Sloane [2]. The map (a, b) $\mapsto a+2 b$ is the Grundy function of the directed graph whose vertices are the pairs (a, b) of natural integers and arcs the pairs of vertices $\left(\left(a^{\prime}, b^{\prime}\right),(a, b)\right)$ such that either $a^{\prime}<a$ and $b^{\prime}=b$ or $a^{\prime}=a$ and $b^{\prime}<b$. Therefore the nim-addition can be defined recursively as follows:

$$
a+2 b=\min \left(\mathbb{N} \backslash\left\{a^{\prime}+{ }_{2} b, a+2 b^{\prime} ; a^{\prime}<a, b^{\prime}<b\right\}\right)
$$

Thus the nim-addition is the first regular law on \mathbb{N} in the sense that, given all $a^{\prime}+{ }_{2} b$ and $a+2 b^{\prime}$ with $a^{\prime}<a$ and $b^{\prime}<b, a+{ }_{2} b$ is the smallest natural integer which is not excluded by the rule:

$$
a+{ }_{2} b=a^{\prime}+{ }_{2} b \Longrightarrow a=a^{\prime} \text { or } a+2 b=a+{ }_{2} b^{\prime} \Longrightarrow b=b^{\prime}
$$

Surprisingly, it is a group law on \mathbb{N}.
For any prime number $p \geq 3$, the addition $+_{p}$ takes place in the theory of some generalized nim-games [7], [8] and also in the theory of some greedy codes [4]. Moreover this addition plays a crucial role in the recent determination of the least possible size of the sumset of two subsets of $(\mathbb{Z} / p \mathbb{Z})^{N}$
with given cardinalities (S. Eliahou, M. Kervaire, [3]). In [5] H.W. Lenstra announced the following formula due to S . Norton:

$$
\begin{aligned}
& a+_{3} b=\min \left(\mathbb { N } \backslash \left(\left\{a^{\prime}+{ }_{3} b, a+{ }_{3} b^{\prime} ; a^{\prime}<a, b^{\prime}<b\right\} \cup\right.\right. \\
& \left.\left.\left\{a^{\prime \prime}+{ }_{3} b^{\prime \prime}, a^{\prime \prime}<a, b^{\prime \prime}<b, a^{\prime \prime}+_{3} b=a+3 b^{\prime \prime}\right\}\right)\right)
\end{aligned}
$$

and he asked the question if such a recursive definition exists for $+_{p}$ whenever p is a prime number.

The aim of this paper is to answer positively. This answer provides us with a definition "à la Conway" of prime numbers.

2. The ${ }^{+}$-ADDItion table as a graph

Let \mathbb{F}_{p} be the finite field with p elements; for $\lambda \in \mathbb{F}_{p}$, let $\tilde{\lambda}$ be the representative number of the class λ belonging to $\{0,1, \cdots, p-1\}$ and, for $a \in \mathbb{N}$, define $\lambda \cdot{ }_{p} a=\tilde{\lambda} \cdot p a=a+_{p} a+_{p} \cdots+_{p} a$ with $\tilde{\lambda}$ terms a.

The operations $+_{p}$ and $\cdot p$ provide \mathbb{N} with a structure of \mathbb{F}_{p}-vector space isomorphic to the \mathbb{F}_{p}-vector space of polynomials $\mathbb{F}_{p}[X]$.

We define a directed graph \mathcal{G}_{p} as follows:

- the set of its vertices is $\mathbb{N} \times \mathbb{N}$,
- the arcs of \mathcal{G}_{p} are the pairs of vertices $\left(\left(a^{\prime}, b^{\prime}\right),(a, b)\right)$ such that
$-a^{\prime} \leq a, b^{\prime} \leq b$,
- $a^{\prime}=a+_{p} \lambda \cdot p r, b^{\prime}=b+_{p}(1-\lambda) \cdot p r$ for some $r \in \mathbb{N}^{*}$ and $\lambda \in \mathbb{F}_{p}$.

The graph \mathcal{G}_{p} does not admit circuit; thus the Grundy function of \mathcal{G}_{p} is the unique map g of $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that:

$$
\left.g((a, b))=\min \left(\mathbb{N} \backslash g\left(\left(a^{\prime}, b^{\prime}\right)\right) ;\left(\left(a^{\prime}, b^{\prime}\right),(a, b)\right) \text { is an } \operatorname{arc} \text { of } \mathcal{G}_{p}\right\}\right)
$$

Proposition 1. The Grundy function of \mathcal{G}_{p} is the addition map: $(a, b) \mapsto$ $a+{ }_{p} b$.

First of all, we give some lemmas on the natural ordering of the representative set $\{0,1, \cdots, p-1\}$ of \mathbb{F}_{p}. It is sometimes more convenient to express them in terms of the following ordering on \mathbb{F}_{p} :

$$
u \prec v \Longleftrightarrow \tilde{u}<\tilde{v}
$$

where \tilde{u} (resp. \tilde{v}) is the representative number of $u \in \mathbb{F}_{p}$ (resp. $v \in \mathbb{F}_{p}$) belonging to $\{0,1, \cdots, p-1\}$.

Lemma 1. For all $u, v \in \mathbb{F}_{p}$,

$$
\widetilde{u+v}=\tilde{u}+{ }_{p} \tilde{v}=\left\{\begin{array}{lll}
\tilde{u}+\tilde{v} & \text { if } & \bar{u}+\bar{v} \leq p-1 \\
\bar{u}+\tilde{v}-p & \text { if } & \tilde{u}+\tilde{v} \geq p
\end{array}\right.
$$

Thus $u+v \prec u \Longleftrightarrow \tilde{u}+\tilde{v} \geq p \Longleftrightarrow u+v \prec v$.
Lemma 2. Let u, r, s be elements of \mathbb{F}_{p} such that $r \prec s$ and $u+r \prec u$. Then $r \prec r-s$ and $u+r-s \prec u$.

Proof. $\tilde{\boldsymbol{r}}<\tilde{\boldsymbol{s}} \Longrightarrow \widetilde{r-s}=\boldsymbol{p}+\tilde{r}-\tilde{\boldsymbol{s}}>\tilde{\boldsymbol{r}} \Longrightarrow r \prec r-s ;$
$\tilde{u}+\widetilde{r-s}=\tilde{u}+\tilde{r}+p-\tilde{s}>\tilde{u}+\tilde{r} \geq p \Longrightarrow u+r-s \prec u$.
Lemma 3. Let u, v, r be elements of \mathbb{F}_{p} such that $u \prec u+r, v \prec v+r$ and $u+v+r \prec u+v$. Then there exist $s, t \in \mathbb{F}_{p}$ such that $s+t=r, u+s \prec u$ and $v+t \prec v$.

Proof. Conditions:

$$
\text { (C) }\left\{\begin{array}{l}
u+v+r \prec u+v, \\
u \prec u+r, \\
v \prec v+r,
\end{array}\right.
$$

are equivalent to:

$$
\left\{\begin{array}{l}
\widetilde{u+v}+\tilde{r} \geq p \\
\tilde{u}+\tilde{r} \leq p-1 \\
\tilde{v}+\tilde{r} \leq p-1
\end{array}\right.
$$

Since $\widetilde{u+v} \geq p-\tilde{r}$ with $\tilde{r} \leq p-1-\tilde{u}$, we have $\widetilde{u+v} \geq \tilde{u}+1$. Hence $\widetilde{u+v} \geq \max (\tilde{u}, \tilde{v})+1$. Moreover $\tilde{u}+\tilde{v}-p<\tilde{u}<\widetilde{u+v}$. Therefore, by Lemma $1, \tilde{u}+\tilde{v} \leq p-1$ and the conditions (C) are equivalent to:

$$
\left\{\begin{aligned}
p-\tilde{u}-\tilde{v} & \leq \tilde{r} \leq p-1 \\
1 & \leq \tilde{r} \leq p-1-\tilde{u} \\
1 & \leq \tilde{r} \leq p-1-\tilde{v}
\end{aligned}\right.
$$

or, more simply, to: $\max (\tilde{u}, \tilde{v})+1 \leq p-\tilde{r} \leq \tilde{\boldsymbol{u}}+\tilde{\boldsymbol{v}}$.
We are looking for s and $t \in \mathbb{F}_{p}$ such that:

$$
\left\{\begin{array}{l}
s+t=r \\
u+s<u \\
v+t<v
\end{array}\right.
$$

or equivalently such that:

$$
\left\{\begin{array}{l}
\sigma+\tau=\rho \\
1 \leq \sigma \leq \tilde{u} \leq p-1 \\
1 \leq \tau \leq \tilde{v} \leq p-1
\end{array}\right.
$$

with $\rho=p-\tilde{r}, \sigma=p-\tilde{s}$ and $\tau=p-\tilde{t}$. $>$ From the condition $1+\max (\tilde{u}, \tilde{v}) \leq$ $\rho \leq \tilde{u}+\tilde{v}$, it is clear that such integers σ and τ do exist. Thus the lemma is proved.

Now, for any natural integer x, let \bar{x} be its class modulo p, let $x=$ $\sum_{i>0} x_{i} p^{i}$ with $x_{i} \in\{0,1, \cdots, p-1\}$ its p-ary expansion, and let i_{x} be the largest index $i \geq 0$ such that $x_{i} \neq 0$. In order to summarize all these notations we set:

Lemma 4. For all $x, y \in \mathbb{N}$ the following assertions are equivalent
(i) $x+{ }_{p} y<x$,
(ii) $x_{i_{y}}+_{p} y_{i_{y}}<x_{i_{y}}$,
(iii) $\overline{x_{i y}}+\overline{y_{i_{y}}} \prec \overline{x_{i y}}$,
(iv) $x_{i_{y}}+y_{i_{y}} \geq p$.

Proof of Proposition 1. Let a, b be natural integers. For any natural integer $c<a+_{p} b$, there exists $r \in \mathbb{N}^{*}$ so that $c=a+_{p} b+_{p} r$. We will prove that for any $r \in \mathbb{N}^{*}$ such that $a+_{p} b+_{p} r<a+_{p} b$, there exists $\lambda \in \mathbb{F}_{p}$ such that $a+_{p} \lambda \cdot{ }_{p} r \leq a$ and $b+_{p}(1-\lambda) \cdot{ }_{p} r \leq b$. With the notations of Lemma 4, we have:

$$
\begin{aligned}
a+{ }_{p} b+{ }_{p} r<a+_{p} b & \Longleftrightarrow \overline{a_{i_{r}}+b_{i_{r}}+r_{i_{r}}} \prec \overline{a_{i_{r}}+b_{i_{r}}}, \\
a<a+p r & \Longleftrightarrow \overline{a_{i_{r}}} \prec \overline{a_{i_{r}}+r_{i_{r}}}, \\
h<b+r & \Longleftrightarrow \bar{b} \prec \bar{b}+r_{i}
\end{aligned}
$$

There exist $s, t \in \mathbb{F}_{p}$ such that $\overline{r_{i_{r}}}=s+t, \overline{a_{i_{r}}}+s \prec \overline{a_{i_{r}}}$ and $\overline{b_{i_{r}}}+t \prec \overline{b_{i_{r}}}$. Let $\lambda=s{\overline{r_{i_{r}}}}^{-1} \in \mathbb{F}_{p}$; then: $s=\lambda \overline{r_{i_{r}}}, t=(1-\lambda) \overline{r_{i_{r}}}, \overline{a_{i_{r}}}+\lambda \overline{r_{i_{r}}} \prec \overline{a_{i_{r}}}$ and $\overline{b_{i_{r}}}+(1-\lambda) \overline{r_{i_{r}}} \prec \overline{b_{i_{r}}} ;$ in other words : $a+_{p} \lambda \cdot{ }_{p} r<a$ and $b+_{p}(1-\lambda) \cdot p r<v$ (Lemma 4).

Therefore $a+_{p} b=\min \left(\mathbb{N} \backslash E_{p}\right)$ where E_{p} is the set of all the natural integers $a^{\prime}+{ }_{p} b^{\prime}$ with $a^{\prime}<a, b^{\prime}<b$ and such that there exist $\lambda \in \mathbb{F}_{p}$ and $r \in \mathbb{N}^{*}$ satisfying $a^{\prime}=a+_{p} \lambda \cdot p r, b^{\prime}=b+_{p}(1-\lambda) \cdot p r$. This means that $(a, b) \mapsto a+_{p} b$ is the Grundy function of \mathcal{G}_{p}.
Corollary. (S. Eliahou, M. Kervaire [3]) - Let us denote by $[0, a]$ the interval $\left\{a^{\prime} \in \mathbb{N} ; a^{\prime} \leq a\right\}$ for $a \in \mathbb{N}$. Then for all $a, b \in \mathbb{N}$ there exists $c \leq a+b$ such that $[0, a]+{ }_{p}[0, b]=[0, c]$.
Proof. Let $c=\max \left([0, a]+_{p}[0, b]\right)$ and let $a_{1} \leq a, b_{1} \leq b$ such that $c=$ $a_{1}+_{p} b_{1}$. For all $d<c$ there exist $\lambda \in \mathbb{F}_{p}$ and $r \in \mathbb{N}^{*}$ such that $d=$ $\lambda \cdot{ }_{p} a_{1}+_{p}(1-\lambda) \cdot p b_{1}, \lambda \cdot p a_{1}<a_{1}$ and $(1-\lambda) \cdot p b_{1}<b_{1}$; therefore $d \in[0, a]+{ }_{p}[0, b]$.
Remark. With the notations of the proof of Proposition 1, we have:

1. $E_{2}=\left\{a+{ }_{2} b^{\prime}, a^{\prime}+{ }_{2} b ; a^{\prime}<a, b^{\prime}<b\right\}$,
2. $E_{3}=\left\{a+3 b^{\prime}, a^{\prime}+_{3} b ; a^{\prime}<a, b^{\prime}<b\right\} \cup\left\{a^{\prime \prime}+{ }_{3} b^{\prime \prime}, a^{\prime \prime}<a, b^{\prime \prime}<\right.$ $\left.b, a+{ }_{3} b^{\prime \prime}=a^{\prime \prime}+{ }_{3} b\right\}$ because in this case, $\lambda=0$ or $\lambda=1$ or $\lambda=1-\lambda$.
3. In the case where $p \geq 5$, the situation is a little more complicated because the formula $a+_{p} b=\min \left(\mathbb{N} \backslash E_{p}\right)$ will be effectively recursive only when we can describe the set E_{p} using only pairs $(\alpha, \beta) \in \mathbb{N} \times \mathbb{N}$ with $\alpha \leq a, \beta \leq b$ and $(\alpha, \beta) \neq(a, b)$.

3. A RECURSIVE EXCLUSION ALGORITHM FOR $a{ }_{p} b$

Given a prime number p and a pair (a, b) of natural integers, we will describe a rule that excludes for the calculation of $a+_{p} b$ all the natural
integers of the kind $a^{\prime}+_{p} b^{\prime} \neq a+_{p} b$ with $a^{\prime} \leq a$ and $b^{\prime} \leq b$ without using any pair of integers $\left(a^{\prime \prime}, b^{\prime \prime}\right)$ such that $a^{\prime \prime}>a$ or $b^{\prime \prime}>b$.

For all $S \subset \mathbb{N}, S^{*}$ means $S \backslash\{0\}$.
Let \mathcal{M} and \mathcal{N} be two finite sets of natural integers such that $\mathcal{M} \cap \mathcal{N}=$ $\{0,1\}$ and let $\left(a_{m}\right)_{m \in \mathcal{M}}$ and $\left(b_{n}\right)_{n \in \mathcal{N}}$ be two sequences of natural integers (respectively indexed by \mathcal{M} and \mathcal{N}) satisfying the conditions:
$-a_{0}=a, b_{0}=b$,
$-a_{1}+_{p} b=a+_{p} b_{1}$,
$-\forall(m, n) \in \mathcal{M}^{*} \times \mathcal{N}^{*}, a_{m}<a, b_{n}<b$,

- $\forall m \in \mathcal{M}^{*} \backslash\{1\}, \exists k \in \mathcal{M}^{*}$ such that $k<m, m-k \in \mathcal{N}$ and $a_{m}+{ }_{p} b=$ $a_{k}+_{p} b_{m-k}$,
$-\forall n \in \mathcal{N}^{*} \backslash\{1\}, \exists \ell \in \mathcal{N}^{*}$ such that $\ell<n, n-\ell \in \mathcal{M}$ and $a+{ }_{p} b_{n}=$ $a_{n-\ell}+{ }_{p} b_{\ell}$.

Such a pair of sequences $\left(\left(a_{m}\right)_{m \in \mathcal{M}},\left(b_{n}\right)_{n \in \mathcal{N}}\right)$ is called a p-chain of (a, b) of length card $\mathcal{M}^{*}+\operatorname{card} \mathcal{N}^{*}$.

Remark. 1 - The p-chains of (a, b) of length 2 are the pairs $\left(\left\{a, a_{1}\right\},\left\{b, b_{1}\right\}\right)$ with $a_{1}<a, b_{1}<b$ and $a+_{p} b_{1}=a_{1}+_{p} b$ (see the formula of S. Norton in the introduction).

2-For a p-chain of (a, b) of length ≥ 3, we have $a_{2}+_{p} b=a_{1}+p b_{1}$ or $a+_{p} b_{2}=a_{1}+_{p} b_{1}, a_{3}+_{p} b=a_{2}+_{p} b_{1}$ provided that (a_{2}, b_{1}) lies in the p-chain, or $a_{3}+_{p} b=a_{1}+_{p} b_{2}$ provided that (a_{1}, b_{2}) lies in the p-chain.

For convenience we extend our definition to length $1 p$-chain of (a, b) : it is the pairs $\left(a,\left\{b, b_{1}\right\}\right)$ or $\left(\left\{a, a_{1}\right\}, b\right)$ with $a_{1}<a, b_{1}<b$.

A p-chain $\left(\left(a_{m}\right)_{m \in \mathcal{M}},\left(b_{n}\right)_{n \in \mathcal{N}}\right)$ of (a, b) is called a p-exclusion chain for $a+_{p} b$ (or of $\left.(a, b)\right)$ if $\forall n \in \mathcal{M}^{*} \cup \mathcal{N}^{*}, p \nmid n$.

Finally the set of all integers $a^{\prime}+_{p} b^{\prime}$ where (a^{\prime}, b^{\prime}) belongs to any p exclusion chain for $a+{ }_{p} b$ of length $\leq p-1$ is called the p-exclusion set for $a+{ }_{p} b$ (or of (a, b)); it's denoted by $E_{p}(a, b)$.

We will prove:
Theorem. $\left(\left(a^{\prime}, b^{\prime}\right),(a, b)\right)$ is an arc of \mathcal{G}_{p} if and only if there exists a p exclusion chain for $a+_{p} b$ of length $\leq p-1$ containing $\left(a^{\prime}, b^{\prime}\right)$. In other words : $a+_{p} b=\min \left(\mathbb{N} \mid E_{p}(a, b)\right)$.
Lemma 5. Let $\left(\left(a_{m}\right)_{m \in \mathcal{M}},\left(b_{n}\right)_{n \in \mathcal{N}}\right)$ be a p-chain of (a, b) of length ≥ 2. There exists $r \in \mathbb{N}^{*}$ such that $a_{m}=a+_{p} m \cdot p r$ and $b_{n}=b+_{p} n \cdot{ }_{p} r$ for all $(m, n) \in \mathcal{M} \times \mathcal{N}$. Thus if $\boldsymbol{p} \mid \boldsymbol{m}+\boldsymbol{n}$ then $a_{m}+_{p} b_{n}=a+{ }_{p} b$.
Proof. Let $r \in \mathbb{N}^{*}$ such that $a_{1}=a+{ }_{p} r$; then $a+_{p} b_{1}=a_{1}+_{p} b=a+{ }_{p} r+_{p} b$, therefore $b_{1}=b+_{p} r$. Suppose that for any $k \in \mathcal{M}$ and $\ell \in \mathcal{N}$ with $1 \leq k \leq m-1$ and $1 \leq \ell \leq n-1$ we have $a_{k}=a+{ }_{p} k \cdot{ }_{p} r$ and $b_{\ell}=b+{ }_{p} \ell \cdot{ }_{p} r$, then there exists $k_{0} \in \mathcal{M}$ such that $1 \leq k_{0} \leq m-1, m-k_{0} \in \mathcal{N}$ and $a_{m}+_{p} b=a_{k_{0}}+_{p} b_{m-k_{0}}=a+_{p} k_{0} \cdot{ }_{p} r+_{p} b+_{p}\left(m-k_{0}\right) \cdot p r=a+_{p} b+_{p} m \cdot p r$.

Therefore $a_{m}=a+_{p} m \cdot{ }_{p} r$ and the lemma is proved by recurrence.
Proposition 2. Let $\left(\left(a_{m}\right)_{m \in \mathcal{M}},\left(b_{n}\right)_{n \in \mathcal{N}}\right)$ be ap-chain of (a, b). Let (m, n) $\in \mathcal{M} \times \mathcal{N}$ such that $p \nmid m+n$, then $\left(\left(a_{m}, b_{n}\right),(a, b)\right)$ is an arc of \mathcal{G}_{p}.
Proof. - If the length of this chain is 1 , this is clear; if not, let $r \in \mathbb{N}^{*}$ such that $a_{m}=a+_{p} m \cdot{ }_{p} r$ and $b_{n}=b{ }_{p} n \cdot{ }_{p} r$ (Lemma 5). Let $\mu \in \mathbb{F}_{p}^{*}$ be the class modulo p of $m+n$. If $p \mid m$ then $a_{m}=a$ (Lemma 5) and ($\left.\left(a_{m}, b_{n}\right),(a, b)\right)$ is an arc of \mathcal{G}_{p} since $b_{n}<b$. If $p \nmid m$ and $p \nmid m+n$, let $\lambda \in \mathbb{F}_{p}(\lambda \neq 0,1)$ be the class modulo p of $\frac{m}{m+n}$ then $m \cdot_{p} r=\lambda \cdot_{p} s$ and $n \cdot p r=(1-\lambda) \cdot p s$ where $s=\mu \cdot{ }_{p} r$. Thus $\left(\left(a_{m}, b_{n}\right),(a, b)\right)$ is an arc of \mathcal{G}_{p}.

We just proved that if $\left(\left(a_{m}\right)_{m \in \mathcal{M}},\left(b_{n}\right)_{n \in \mathcal{N}}\right)$ is a p-exclusion chain for $a+_{p} b$ then, for every $(m, n) \in \mathcal{M}^{*} \times \mathcal{N}^{*},\left(\left(a_{m}, b_{n}\right),(a, b)\right)$ is an arc of \mathcal{G}_{p}. Now, in order to prove the converse, we will describe an algorithm looking like the Euclid algorithm for the gcd.

Let $u_{0}, v_{0} \in \mathbb{F}_{p}^{*}$ such that $u_{0} \neq v_{0}$. Define $u_{1}, v_{1} \in \mathbb{F}_{p}^{*}$ as follows:

- if $u_{0} \prec v_{0}$ then $u_{1}=u_{0}-v_{0}$ and $v_{1}=v_{0}$,
- if $v_{0} \prec u_{0}$ then $u_{1}=u_{0}$ and $v_{1}=v_{0}-u_{0}$.

Then as long as $u_{n} \neq v_{n}$ we define $u_{n+1}, v_{n+1} \in \mathbb{F}_{p}^{*}$ as follows:

- if $u_{n} \prec v_{n}$ then $u_{n+1}=u_{n}-v_{n}$ and $v_{n+1}=v_{n}$,
- if $v_{n} \prec u_{n}$ then $u_{n+1}=u_{n}$ and $v_{n+1}=v_{n}-u_{n}$.

Lemma 6. There is an integer $N \leq p-2$ such that $u_{N}=v_{N}$.
Proof. If $u_{n} \neq v_{n}$ then $u_{n+1}+v_{n+1}=\min \left(u_{n}, v_{n}\right)$; moreover if $u_{n} \prec v_{n}$ then $u_{n} \prec u_{n}-v_{n}=u_{n+1}$ (Lemma 2) and $u_{n} \prec v_{n+1}\left(=v_{n}\right)$; therefore $\min \left(u_{n}, v_{n}\right) \prec \min \left(u_{n+1}, v_{n+1}\right)$ and the sequence $\left(\min \left(u_{n}, v_{n}\right)\right)$ is strictly increasing as long as $u_{n-1} \neq v_{n-1}$. Thus:

$$
\min \left(u_{0}, v_{0}\right) \prec \min \left(u_{1}, v_{1}\right) \prec \cdots \prec \min \left(u_{N-1}, v_{N-1}\right) \prec u_{N}=v_{N}
$$

where $N=1+\max \left\{k \in \mathbb{N} ; u_{k} \neq v_{k}\right\}$. Finally $N \leq p-2$ because $\min \left(u_{0}, v_{0}\right) \neq 0$.

Let $w=u_{N}=v_{N} \in \mathbb{F}_{p}^{*}$ and define two increasing sequences of natural integers $\left(\mu_{n}\right)_{1 \leq n \leq N+1}$ and $\left(\nu_{n}\right)_{1 \leq n \leq N+1}$ as follows:
$\mu_{1}=\nu_{1}=1$ and for $1 \leq n \leq N$,

- if $u_{N-n} \prec v_{N-n}$ then $\mu_{n+1}=\mu_{n}+\nu_{n}$ and $\nu_{n+1}=\nu_{n}$,
- if $v_{N-n} \prec u_{N-n}$ then $\mu_{n+1}=\mu_{n}$ and $\nu_{n+1}=\mu_{n}+\nu_{n}$.

Setting $\mathcal{M}=\{0\} \cup\left\{\mu_{n} ; 1 \leq n \leq N+1\right\}$ and $\mathcal{N}=\{0\} \cup\left\{\nu_{n} ; 1 \leq n \leq\right.$ $N+1\}$ we get by iteration:

Lemma 7. $\forall \mu \in \mathcal{M}^{*} \backslash\{1\}, \exists \mu^{\prime} \in \mathcal{M}^{*}, \mu^{\prime}<\mu, \mu-\mu^{\prime} \in \mathcal{N}$.
$\forall \nu \in \mathcal{N}^{*} \backslash\{1\}, \exists \nu^{\prime} \in \mathcal{N}^{*}, \nu^{\prime}<\nu, \nu-\nu^{\prime} \in \mathcal{M}$.
Lemma 8. For $1 \leq n \leq N+1, \mu_{n} w=u_{N-n+1}$ and $\nu_{n} w=v_{N-n+1}$.

Proof. $\mu_{1} w=u_{N}, \nu_{1} w=v_{N}$ and for $1 \leq n \leq N$, we have either $u_{N-n}=$ $u_{N-n+1}+v_{N-n+1}$ and $v_{N-n}=v_{N-n+1}$, or $u_{N-n}=u_{N-n+1}$ and $v_{N-n}=$ $u_{N-n+1}+v_{N-n+1}$. The lemma follows by recurrence.

Lemma 9. For $1 \leq n \leq N+1, p \nmid \mu_{n}$ and $p \nmid \nu_{n}$.
Proof. Obvious by the preceding lemma.
Lemma 10. $\operatorname{Card} \mathcal{M}^{*}+\operatorname{Card} \mathcal{N}^{*}=N+1 \leq p-1$.
Proof. For $1 \leq n \leq N, u_{n}+v_{n}=\min \left(u_{n-1}, v_{n-1}\right)$, therefore the sequence $\left(\left(\mu_{n}+\nu_{n}\right) w\right)_{1 \leq n \leq N}$ is strictly decreasing in \mathbb{F}_{p}^{*} for the ordering \prec. Moreover
$\operatorname{Card} \mathcal{M}^{*}+\operatorname{Card} \mathcal{N}^{*}=\operatorname{Card}\left(\{w\} \cup\left\{\left(\mu_{n}+\nu_{n}\right) \boldsymbol{w} ; 1 \leq n \leq N\right\}\right)$.
Now we can complete the
Proof of the theorem. Let $\left(\left(a^{\prime}, b^{\prime}\right),(a, b)\right)$ be an arc of \mathcal{G}_{p} with $a^{\prime}=a+_{p}$ $\lambda \cdot{ }_{p} r<a, b^{\prime}=b+_{p}(1-\lambda) \cdot p r<b, \lambda \in \mathbb{F}_{p}, r \in \mathbb{N}^{*}$. We will construct a p-exclusion chain for $a+_{p} b$, containing (a^{\prime}, b^{\prime}), of length $\leq p-1$.

If $\lambda=0$ or 1 there exists such an obvious chain of length 1 .
If $\lambda=\frac{1}{2},(p \geq 3),\left(\left\{a, a^{\prime}\right\},\left\{b, b^{\prime}\right\}\right)$ is such a p-exclusion chain of length 2 for $a+_{p} b$.

Now we suppose that $\lambda \neq 0,1, \frac{1}{2}$ and therefore that $p \geq 5$. Writing $r=\sum_{i \geq 0} r_{i} p^{i}$ in p-ary, let us recall that i_{r} denotes the largest index i such that $r_{i_{r}} \neq 0$. Let $u_{0}=\lambda \overline{r_{i_{r}}} \in \mathbb{F}_{p}^{*}, v_{0}=(1-\lambda) \overline{r_{i_{r}}} \in \mathbb{F}_{p}^{*}$; then $u_{0}+v_{0} \neq 0$ and $u_{0}-v_{0} \neq 0$. So we can construct as above the sequences $\left(u_{n}\right)_{0 \leq n \leq N},\left(v_{n}\right)_{0 \leq n \leq N}$ with $u_{N}=v_{N}=w$, the increasing sequences of integers $\left(\mu_{n}\right)_{1 \leq n \leq N+1},\left(\nu_{n}\right)_{1 \leq n \leq N+1}$ with $\mu_{1}=\nu_{1}=1$ and their associated sets $\left.\mathcal{M}=\{0\} \cup \overline{\{ } \mu_{n} ; 1 \leq n \leq \bar{N}+1\right\}, \mathcal{N}=\{0\} \cup\left\{\nu_{n} ; 1 \leq n \leq N+1\right\}$.
Lemma 11. The equality $\mu_{N+1}(1-\lambda)=\nu_{N+1} \lambda$ holds in \mathbb{F}_{p}^{*}.
Proof. By Lemma 8, $\mu_{N+1} w=u_{0}=\lambda \overline{r_{i_{r}}}$ and $\nu_{N+1} w=v_{0}=(1-\lambda) \overline{r_{i_{r}}}$ with $w \neq 0$ and $\overline{r_{i_{r}}} \neq 0$.

Thus there exists a unique natural integer R such that $\mu_{N+1}{ }_{p} R=\lambda \cdot{ }_{p} r$ and $\nu_{N+1}{ }_{p} R=(1-\lambda) \cdot{ }_{p} r$.
Lemma 12. $\overline{R_{i_{r}}}=w$.
Proof. $\mu_{N+1} w=u_{0}=\lambda \overline{r_{i r}}=\mu_{N+1} \overline{R_{i_{r}}}$ with $p \nmid \mu_{N+1}$.
For every $(\mu, \nu) \in \mathcal{M} \times \mathcal{N}$, let $a_{\mu}=a+_{p} \mu \cdot{ }_{p} R$ and $b_{\nu}=b+_{p} \nu \cdot{ }_{p} R$.
Lemma 13. For every $(\mu, \nu) \in \mathcal{M}^{*} \times \mathcal{N}^{*}, a_{\mu}<a$ and $b_{\mu}<b$.
Proof. $a^{\prime}=a+_{p} \lambda \cdot{ }_{p} r<a$ and $b^{\prime}=b+_{p}(1-\lambda) \cdot p r<b ;$
$\Longrightarrow \overline{a_{i_{r}}}+u_{0} \prec \overline{a_{i_{r}}}$ and $\overline{b_{i_{r}}}+v_{0} \prec \overline{b_{i_{r}}}$ (Lemma 4);
$\Longrightarrow \overline{a_{i_{r}}}+u_{1} \prec \overline{a_{i_{r}}}$ and $\overline{b_{i_{r}}}+v_{1} \prec \overline{b_{i_{r}}}$ (Lemma 2);
$\Longrightarrow \overline{a_{i_{r}}}+\mu_{N} \overline{R_{i_{r}}} \prec \overline{a_{i_{r}}}$ and $\overline{b_{i_{r}}}+\nu_{N} \overline{R_{i_{r}}} \prec \overline{b_{i_{r}}}$ (Lemmas 8 and 12);
$\Longrightarrow a+_{p} \mu_{N} \cdot p R<a$ and $b+_{p} \nu_{N} \cdot p R<b$ (Lemma 4).
Then we complete the proof by recurrence.

Now $\left(\left(a_{\mu}\right)_{\mu \in \mathcal{M}},\left(b_{\nu}\right)_{\nu \in \mathcal{N}}\right)$ is clearly a p-chain of (a, b) (Lemmas 7 and 13), containing (a^{\prime}, b^{\prime}) (Lemma 11), of length $\leq p-1$ (Lemma 10), which is a p-exclusion chain for $a+_{p} b$ (Lemma 9).

Remark. 1. In the cases where $p=2$ or 3 , every p-chain of (a, b) of length $\leq p-1$ is a p-exclusion chain for $a+p b$.
2. In the case where $p=5$, a 5 -chain of length 4 is not necessarily a 5 -exclusion chain; we can however write a complete readable formula of the same kind as Norton's formula for $p=3$: let $a, b \in \mathbb{N} ; a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}$ (resp. $b^{\prime}, b^{\prime \prime}, b^{\prime \prime \prime}$) are variables taking their values in $\{0,1, \cdots, a-1\}$ (resp. $\{0,1, \cdots, b-1\}$); let us consider the sets:

$$
\begin{aligned}
S_{1}(a, b)= & \left\{a^{\prime}+5 b\right\} \\
S_{2}(a, b)= & \left\{a^{\prime}+5 b^{\prime} ; a^{\prime}+5 b=a+5 b^{\prime}\right\} \\
S_{3}(a, b)= & \left\{a^{\prime}+5 b^{\prime \prime} ; \exists b^{\prime}, a+5 b^{\prime}=a^{\prime}++_{5} b, a+5 b^{\prime \prime}=a^{\prime}+{ }_{5} b^{\prime}\right\} \\
S_{4}(a, b)= & \left\{a^{\prime}+{ }_{5} b^{\prime \prime \prime} ; \exists b^{\prime \prime}, a^{\prime}+{ }_{5} b^{\prime \prime} \in S_{3}(a, b), a+5 b^{\prime \prime \prime}=a^{\prime}+_{5} b^{\prime \prime}\right\} \\
& \cup\left\{a^{\prime}+5 b^{\prime \prime \prime} ; \exists a^{\prime \prime}, b^{\prime},\left(a^{\prime}, b^{\prime}\right) \in S_{2}(a, b),\right. \\
& \left.a^{\prime \prime}+{ }_{5} b=a^{\prime}+{ }_{5} b^{\prime}, a+5 b_{5}^{\prime \prime \prime}=a^{\prime \prime}+{ }_{5} b^{\prime}\right\}
\end{aligned}
$$

and let $S_{i}=S_{i}(a, b) \cup S_{i}(b, a)$, for $i=1,2,3,4$.
Then $a+{ }_{5} b=\min \mathbb{N} \backslash\left(S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right)$.
3. Given a natural integer $\nu \geq 2$ not necessarily prime and two natural numbers a, b, let us generalize the definition of the p-exclusion set $E_{p}(a, b)$ of (a, b) replacing p by ν in the previous definition.

Thus a ν-exclusion chain $\left(\left(a_{m}\right)_{m \in \mathcal{M}},\left(b_{n}\right)_{n \in \mathcal{N}}\right)$ of (a, b) is of length $\leq \nu-1$ and such that $\forall m \in \mathcal{M}^{*}, \forall n \in \mathcal{N}^{*}, \nu \nmid m$ and $\nu \nmid n$. Then setting $a *_{\nu} b=\min \left(\mathbb{N} E_{\nu}(a, b)\right), *_{\nu}$ is a group law on \mathbb{N} if and only if ν is a prime number.

Proof. In fact if ν is a composite number then $*_{\nu}$ is not an associative law. Let d be a proper divisor of ν; the following equalities hold:
$(d-1) *_{\nu} 1=d$,
$(\nu-1) *_{\nu} 1=0$,
$(\nu-d) *_{\nu} d^{\prime}=\nu-\left(d-d^{\prime}\right)$ for all $d^{\prime}<d$
and $(\nu-d) *_{\nu} d=\nu$ because $((\nu-d, \nu-2 d, \cdots, 0),(d, 0))$ is a ν exclusion chain of length $\leq \nu-1$. Therefore: $\left((\nu-d) *_{\nu}(d-1)\right) *_{\nu} 1=0$ and: $(\nu-d) *_{\nu}\left((d-1) *_{\nu} 1\right)=\nu$.
4. If we replace in the definition of $*_{\nu}$ the previous conditions $(m, n) \in$ $\mathcal{M}^{*} \times \mathcal{N}^{*} \Longrightarrow \nu \nmid m$ and $\nu \nmid n$ by ν is relatively prime to m and n, then we get $*_{\nu}=+_{p}$ where p is the smallest prime divisor of ν.

Acknowledgments. I thank T. Moreno and P. Segalas, students at the University of Limoges, for testing several algorithms in Turbo Pascal on a PC.

References

[1] C. L. Bouton, Nim, a game with a complete mathematical theory. Ann. Math. Princeton 3 (1902), 35-39.
[2] J. H. Conway, N.J.A. Sloane, Lexicographic Codes, Error Correcting Codes from Game Theory. IEEE Trans. Inform. Theory 32 (1986), 337-348.
[3] S. Eliahou, M. Kervaire, Sumsets in vector spaces over finite fields. J. Number Theory 71 (1998), 12-39.
[4] F. Laubie, On linear greedy codes. to appear.
[5] H. W. Lenstra, Nim Multiplication. Séminaire de Théorie des Nombres de Bordeaux 1977-78, exposé 11, (1978).
[6] V. Levenstein, A class of Systematic Codes. Soviet Math Dokl. 1 (1960), 368-371.
[7] S. Y. R. Li, N-person Nim and N-person Moore's Games. Int. J. Game Theory 7 (1978), 31-36.
[8] E. H. Moore, A generalization of the Game called Nim. Ann. Math. Princeton 11 (1910), 93-94.

François Laubie
UPRESA CNRS 6090 et INRIA de Rocquencourt
Département de Mathématiques
Faculté des Sciences de Limoges
123, avenue Albert Thomas
87060 LIMOGES Cedex
E-mail: laubiocunilim.fr

