On montre qu'un tore stablement rationnel avec un corps de décomposition cyclique est rationnel.
The rationality of a stably rational torus with a cyclic splitting field is proved.
@article{JTNB_1999__11_1_263_0, author = {Valentin E. Voskresenskii}, title = {Stably rational algebraic tori}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {263--268}, publisher = {Universit\'e Bordeaux I}, volume = {11}, number = {1}, year = {1999}, zbl = {0946.14030}, mrnumber = {1730444}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_263_0/} }
TY - JOUR AU - Valentin E. Voskresenskii TI - Stably rational algebraic tori JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 263 EP - 268 VL - 11 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_263_0/ LA - en ID - JTNB_1999__11_1_263_0 ER -
Valentin E. Voskresenskii. Stably rational algebraic tori. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 1, pp. 263-268. https://jtnb.centre-mersenne.org/item/JTNB_1999__11_1_263_0/
[1] Variétés stablement rationnelles non rationnelles. Ann. Math. 121 (1985), 283-318. | MR | Zbl
, , , ,[2] The geometry of linear algebraic groups. Proc. Steklov Inst. Math. 132 (1973), 173-183. | MR | Zbl
,[3] Fields of Invariants of Abelian Groups. Russian Math. Surveys 28 (1973), 79-105. | MR | Zbl
,[4] On the rationality of tori with a cyclic splitting field. Arithmetic and Geometry of Varieties, Kuibyshev Univ., 1988, 73-78 (Russian). | Zbl
,[5] On the birational equivalence of tori with a cyclic splitting field. Zapiski Nauchnykh Seminarov LOMI 64 (1976), 153-158 (Russian). | MR | Zbl
,