VALENTIN E. VOSKRESENSKII Stably rational algebraic tori

Journal de Théorie des Nombres de Bordeaux, tome 11, nº 1 (1999), p. 263-268

<http://www.numdam.org/item?id=JTNB_1999__11_1_263_0>

© Université Bordeaux 1, 1999, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Journal de Théorie des Nombres de Bordeaux 11 (1999), 263–268

Stably rational algebraic tori

par VALENTIN E. VOSKRESENSKII

RÉSUMÉ. On montre qu'un tore stablement rationnel avec un corps de décomposition cyclique est rationnel.

ABSTRACT. The rationality of a stably rational torus with a cyclic splitting field is proved.

Let X be an irreducible algebraic variety over a field k of characteristic zero. We call X stably rational if $X \times_k \mathbf{A}^m$ is rational for some m. In 1984 the first and hitherto only known examples of stably rational but non rational varieties were constructed [1]. Such examples exist over nonclosed fields and over the complex field C. Let now X = T be an algebraic torus over a nonclosed field k. In the category of algebraic tori we have a criterion of stable rationality which enables us to construct stably rational tori. However, among them one has not yet found a nonrational torus.

Conjecture. Any torus which is stably rational over k is rational over k.

In this paper we suggest a new approach to this conjecture. In particular, we prove the rationality of any stably rational torus with a cyclic splitting field.

First recall some facts and definitions. Let T be an algebraic torus defined over a field k, L/k the normal finite splitting field of T, $\Pi = Gal(L/k)$, and \hat{T} the Π -module of rational characters of T. An important rôle is played by quasi-split tori. A torus S over k is called quasi-split if the module \hat{S} has a basis permuted by Π . For example, any maximal k-torus of the group $GL_k(n)$ is quasi-split. Dividing the permutation basis into orbits of Π , we get a representation of the Π -module \hat{S} as a direct sum of indecomposable permutation modules. This construction gives a representation of the torus S as a direct product

(1)
$$S = R_{F_1/k}(G_m) \times \cdots \times R_{F_t/k}(G_m).$$

The group S is a maximal torus in the general linear group $GL_k(n)$, $n = \dim S$, and

 $S(k) = F_1^* \times \cdots \times F_t^*, \ k \subset F_i \subset L.$

The following conditions are equivalent [2]: a) T is stably rational over k; b) T can be included in an exact sequence of the form

$$1 \to S_1 \xrightarrow{\alpha} S_2 \xrightarrow{\beta} T \to 1,$$

where S_1 and S_2 are quasi-split k-tori.

Since S_1 is quasi-split, $H^1(M/F, S_1(M)) = 0$ for any Galois extension M/F, $F \supset k$. From here it follows that there exists a rational k-section $\gamma: T \to S_2$ of the morphism β , $\beta \cdot \gamma = Id$. Let $\delta: S_2 \to S_1$ be the rational k-map defined by

$$\delta(g) = \alpha^{-1}(g/\gamma\beta(g)), \ g \in S_2(M), \ M \supset k.$$

Clearly

$$\delta(\alpha(h)g) = h\delta(g), \ h \in S_1(M).$$

The map δ will be called a *covariant* of the representation α . (The map $\gamma: S_2 \to S_1$ with the condition $\gamma(\alpha(h)g) = h\gamma(g)$ is called a covariant of the representation α .)

We have a rational map

$$\varphi = (\beta, \delta) : S_2 \to T \times_k S_1,$$

which is birational over k. Indeed, let $\varphi(g_1) = \varphi(g_2)$. Then $\beta(g_1) = \beta(g_2)$ and we have $g_2 = \alpha(h)g_1$. Hence $\delta(g_1) = \delta(g_2) = h\delta(g_1)$. Since the element $\delta(g_1)$ is invertible, h = 1, i.e. $g_1 = g_2$. Since dim $S_2 = \dim S_1 + \dim T$, all varieties are irreducible and φ is injective on an open subset, we conclude that φ is birational over k. We established the following fact.

Proposition. Let $\delta : S_2 \to S_1$ be a covariant of an exact representation $\alpha : S_1 \to S_2$ and $W = \delta^{-1}(a)$ the fibre of δ over $a \in S_1(k)$. Then the varieties $T = S_2/\alpha(S_1)$ and W are birationally equivalent over k. All the fibres of δ are stably rational over k.

This proposition allows us to reformulate the question on stably rational tori in terms of linear representations. Consider one component $R_{F/k}(G_m)$ of S_1 , $R_{F/k}(k) = F^*$, where F^* is the multiplicative group of the field F, (F:k) = r. Denote by V_r the vector space of dimension r over k. We have the regular exact representation of F^* on V_r , and this action extends to the action of $R_{F/k}(G_m)$ on the family $V_r \otimes_k M$, $M \supset k$, i.e. $R_{F/k}(G_m)$ acts on V_r in the sense of algebraic geometry. Let U be a direct sum of the V_r 's corresponding to decomposition (1) of S_1 , and let V be the analogous sum corresponding to S_2 . The map α defines a linear representation of S_1 on V. The groups S_1 and S_2 act faithfully on U and V. Each S_i has an open orbit in the corresponding space. We shall sometimes identify this orbit and the group itself. We can now extend the covariant $\delta: S_2 \to S_1$ to a rational covariant

$$\delta: V \to U, \ \delta(\alpha(h)v) = h\delta(v), \ h \in S_1(M), \ v \in V(M) = V \otimes_k M.$$

 $\mathbf{264}$

Remark. Since the field k is of characteristic zero, any representation of S_1 can be studied at the level of the group $S_1(k)$, i.e. we can consider usual linear representations of groups of the type F^* .

Thus the field of rational functions k(T) of a stably rational torus T is the field of invariants of the quasi-split torus S_1 acting faithfully on V by the monomorphism α :

$$k(T) = k(V)^{S_1}.$$

Obviously the converse is also true, i.e. if a quasi-split torus S acts faithfully on a linear space V, the field $k(V)^S$ is stably rational over k. Indeed, the torus S is a subgroup of a maximal k-torus S' of GL(V) and the field $k(V)^S$ is the field of rational functions of the stably rational torus S'/S.

Example. Let L be a finite extension of a field k and F a subfield of L, $k \subset F \subset L$. We have an embedding

$$\alpha: S_1 = R_{F/k}(G_m) \to R_{L/k}(G_m) = S_2.$$

Consider the quotient $T = S_2/S_1$. We have an epimorphism of linear spaces over k

$$\delta = Tr_{L/F} : L \to F, \ \delta(ax) = a\delta(x), \ a \in F, \ x \in L,$$

i.e. δ is a covariant of α . The fibre $W = \delta^{-1}(1)$ is an affine space over k, dim $W = \dim T$. The varieties T and W are birationally equivalent, hence the torus T is rational over k.

We now consider a more complicated example and presents a new approach to solution these problem. Let V_m and V_n be vector k-spaces, S_m and S_n maximal k-tori in $GL(V_m)$ and $GL(V_n)$. Then we have a representation of $S_m \times_k S_n$ in the tensor space $V_m \otimes_k V_n = V$. Let N be the image of $S_m \times_k S_n$ in GL(V) under this tensor representation. The group N is contained in a maximal k-torus S of GL(V). There are two exact sequences of k-tori

(2)
$$1 \to G_{m,k} \to S_m \times_k S_n \to N \to 1,$$

(3)
$$1 \rightarrow N \rightarrow S \rightarrow T \rightarrow 1.$$

We ask whether T is k-rational. Let us write down the exact sequences of Π -modules dual to (2) and (3)

(4)
$$0 \to \hat{N} \to \hat{S}_m \oplus \hat{S}_n \xrightarrow{\varepsilon} \mathbf{Z} \to 0,$$

(5)
$$0 \rightarrow \hat{T} \rightarrow \hat{S} \rightarrow \hat{N} \rightarrow 0,$$

where $\Pi = Gal(L/k)$, L is the normal finite splitting field of all tori in sequences (2) and (3). We only consider the case (m, n) = 1. From (2) we

obtain the cohomology exact sequence

$$(\hat{S}_m \oplus \hat{S}_n)^{\Pi} \xrightarrow{\varepsilon} \mathbf{Z} \to H^1(\Pi, \hat{N}) \to 0.$$

The group $Im(\varepsilon)$ contains the integers of the form am + bn, this implies that ε is an epimorphism. Hence $H^1(\Pi, \hat{N}) = 0$, it follows that sequence (4) splits, i.e.

$$\hat{N} \oplus \mathbf{Z} \cong \hat{S}_m \oplus \hat{S}_n.$$

This proves that T is stably rational. Note that (6) implies $H^1(k, N) = 0$, i.e. any principal homogeneous space X of N is trivial, $X(k) \cong S_m(k)S_n(k)$ in S(k).

One can view S_m and S_n as subgroups of $GL_k(V)$, $V = V_m \otimes_k V_n$. We denote by R the set of split tensors in $V_m \otimes_k V_n$. The group $S_m \times_k S_n$ acts on R, and R contains an open orbit of $S_m \times_k S_n$, dim R = m + n - 1. Let D_m be a maximal k-diagonal subgroup of $GL_k(V_m)$ calculated with respect to a certain k-basis of V_m , D_n is defined analogously. The set R is stable under $D_m \times_k D_n$, and R contains an open orbit of $D_m \times_k D_n$. Let D be the maximal k-diagonal torus of GL(V) which contains $Im(D_m \times_k D_n) =$ $D_m D_n \subset GL_k(V)$. The factor-group $D/D_m D_n = D_0$ is a split k-torus hence it is k-rational. We have a decomposition $D = D_m D_n \times_k D_0$ as a direct product, dim $D_0 = (m-1)(n-1)$. Considering the variety D as an open orbit in V and taking into account that orbit of the group $D_m D_n$ is open in R, we obtain a birational decomposition $V \cong R \times_k D_0$. Because R is invariant set with respect to the action of the group $S_m \times S_n$ on V hence the variety $T = S/S_mS_n$ is birationally equivalent to D_0 over k, $S_m S_n = Im(S_m \times_k S_n) \subset GL_k(V)$. The result of our discussion can be summed up as follows.

Theorem 1. Let S_i be a maximal k-torus of $GL_k(V_i)$. Then the quotient space $(V_m \otimes_k V_n)/(S_m \times_k S_n)$ is rational over k if (m, n) = 1. \triangle

This theorem was proved by Klyachko [4] by another method. Now consider the problem of rationality of tori with a cyclic splitting field. The idea used in the proof of Theorem 1 allows us to make a step forward in the problem of rationality of tori.

Let L/k be a cyclic extension, $\Pi = Gal(L/k)$ is the cyclic group of order n with generator σ . Let $\mathbb{Z}[\zeta_n]$ be the ring of integers in the cyclotomic field $\mathbb{Q}[\zeta_n]$, where ζ_n is a primitive n-th root of unity. Define a Π -module structure on $\mathbb{Z}[\zeta_n]$ by putting $\sigma(\alpha) = \zeta_n \alpha$. Let T_n be the k-torus with character module $\hat{T}_n = \mathbb{Z}[\zeta_n]$. It is known that all tori T_n are stably rational [2]. Chistov [5] proved that any stably rational k-torus T with a cyclic splitting field is birationally equivalent over k to the product of tori of the form T_n . Moreover, it suffices to check their rationality in the case when n is square-free [3].

 $\mathbf{266}$

Thus, let L_n be a cyclic extension of k of degree n, $\Pi_n = Gal(L_n/k)$, and T_n the L_n/k -torus with character module $\hat{T}_n = \mathbb{Z}[\zeta_n]$, $n = p_1 \cdots p_t$ is square-free, p_i is a prime number. If n = p is a prime number there is an exact sequence of Π_p -modules

(7)
$$0 \to \mathbf{Z}[\zeta_p] \to \mathbf{Z}[\Pi_p] \to \mathbf{Z} \to 0,$$

whence by duality one concludes that the torus T_p is isomorphic to the quotient $R_{L_p/k}(G_m)/G_{m,k}$ which, in turn, is an open subset in the projective space \mathbf{P}^{p-1} . Thus T_p is k-rational. Now let $t \geq 2$. We have an epimorphism $\mathbf{Z}[\Pi_n] \to \mathbf{Z}[\Pi_n/\Pi_p]$ for every p|n, whence the following exact sequence of Π_n -modules

(8)
$$0 \to \mathbf{Z}[\zeta_n] \to \mathbf{Z}[\Pi_n] \to \bigoplus_{p|n} \mathbf{Z}[\Pi_n/\Pi_p].$$

The dual sequence of k-tori is of the form

$$\prod_{i=1}^{t} R_{F_i/k}(G_m) \to R_{L/k}(G_m) \to T_n \to 1,$$

where F_i is the subfield of $L = L_n$, $(F_i : k) = n/p_i$.

Short sequence (8) is a part of the long exact sequence obtained by tensoring resolutions of the form (7). It is convenient to describe this situation in the language of tensor representations. Let L_p be the subfield of L_n , $(L_p:k) = p$. Then

$$L_n = L_{p_1} \otimes \cdots \otimes L_{p_t}, \ F_i = \bigotimes_{m \neq i} L_{p_m}, \ 1 \leq i \leq t.$$

We have embeddings of fields $\psi_i : F_i \to L_n$ which determine natural monomorphisms of groups of linear operators $GL_k(F_i) \to GL_k(L_n)$. The group F_i^* is a maximal k-torus of $GL_k(F_i)$, let D_i be the maximal diagonal subgroup of $GL_k(F_i)$ calculated with respect to a certain basis of extension F_i/k . Choose a point in general position $v = v_1 \otimes \cdots \otimes v_t$, $v_i \in L_{p_i}$, so that for each *i* the orbits of *v* under D_i and $S_i = R_{F_i/k}(G_m)$ are open in F_i . Denote by R (resp. R_1) the closure of the orbit of *v* under $S_1 \times \cdots \times S_t$ (resp. $D_1 \times \cdots \times D_t$), we have $R = R_1$. Let D be the maximal k-diagonal torus of $GL_k(L_n)$ which contains $Im(D_1 \times \cdots \times D_t) = D_1 \cdots D_t$. The factor-group $D/D_1 \cdots D_t = D_0$ is k-rational. The group D is the direct product $D_1 \cdots D_t \times D_0$, dim $D_0 = (p_1 - 1) \cdots (p_t - 1)$. We have a birational decomposition into direct product

$$D_0 \times R \cong L_n.$$

The group $S_1 \times \cdots \times S_t$ acts on $R \times D_0$ birationally, respecting orbits in R. Let $g \in S_1 \times \cdots \times S_t$. If g(v, w) = (gv, w') and gv = v, then g = 1, hence w' = w. Therefore the set $v \times D_0$ parametrizes the quotient $R_{L/k}(G_m)/(S_1 \times \cdots \times S_t) = T_n$. We have the following statement. **Theorem 2.** Any stably rational torus with a cyclic splitting field is rational over the ground field of characteristic 0. \triangle

References

- [1] A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc, Sir P. Swinnerton-Dyer, Variétés stablement rationnelles non rationnelles. Ann. Math. 121 (1985), 283-318.
- [2] V. Voskresenskii, The geometry of linear algebraic groups. Proc. Steklov Inst. Math. 132 (1973), 173-183.
- [3] V. Voskresenskii, Fields of Invariants of Abelian Groups. Russian Math. Surveys 28 (1973), 79-105.
- [4] A. Klyachko, On the rationality of tori with a cyclic splitting field. Arithmetic and Geometry of Varieties, Kuibyshev Univ., 1988, 73-78 (Russian).
- [5] A. Chistov, On the birational equivalence of tori with a cyclic splitting field. Zapiski Nauchnykh Seminarov LOMI 64 (1976), 153-158 (Russian).

Valentin E. VOSKRESENSKII Dept. of Math. Samara State University Acad. Pavlov str.1 Samara, 443011, Russia *E-mail*: voskres@info.ssu.samara.ru