By using a generating function approach it is shown that the sum-of-digits function (related to specific finite and infinite linear recurrences) satisfies a central limit theorem. Additionally a local limit theorem is derived.
Dans cet article, nous démontrons que la fonction “somme de chiffres” relative à des recurrences linéaires finies et infinies paxticulieres) satisfait à un theoreme central limite. Nous obtenons aussi un théorème limite local.
@article{JTNB_1998__10_1_17_0, author = {Michael Drmota and Johannes Gajdosik}, title = {The distribution of the sum-of-digits function}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {17--32}, publisher = {Universit\'e Bordeaux I}, volume = {10}, number = {1}, year = {1998}, zbl = {0916.11049}, mrnumber = {1827283}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1998__10_1_17_0/} }
TY - JOUR AU - Michael Drmota AU - Johannes Gajdosik TI - The distribution of the sum-of-digits function JO - Journal de théorie des nombres de Bordeaux PY - 1998 SP - 17 EP - 32 VL - 10 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1998__10_1_17_0/ LA - en ID - JTNB_1998__10_1_17_0 ER -
Michael Drmota; Johannes Gajdosik. The distribution of the sum-of-digits function. Journal de théorie des nombres de Bordeaux, Volume 10 (1998) no. 1, pp. 17-32. https://jtnb.centre-mersenne.org/item/JTNB_1998__10_1_17_0/
[1] Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hung. 68 (1995), 353-361. | MR | Zbl
and ,[2] On a problem in additive number theory, Ann. Math. 49 (1948), 333-340. | MR | Zbl
and ,[3] An asymptotic formula for the average sum of the digits of integers, Am. Math. Monthly 47 (1940), 154-156. | JFM | MR | Zbl
,[4] Power sums of digital sums, J. Number Th. 22 (1986), 161-176. | MR | Zbl
,[5] Sur la fonction sommatoire de la fonction "Somme de Chiffres", L 'Enseignement math. 21 (1975), 31-77. | MR | Zbl
[6] The parity of the Zeckendorf sum-of-digits-function, preprint. | MR
and ,[7] Digital sum moments and substitutions, Acta Arith. 64 (1993), 205-225. | MR | Zbl
and ,[8] Gaussian asymptotic properties of the sum-of-digits functions, J. Number Th. 62 (1997), 19-38. | MR | Zbl
and ,[9] Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Math. 77 (1945), 1-125. | MR | Zbl
,[10] Kombinatorische Faktorisierungen und Ziffernentwicklungen, thesis, TU Wien, 1996.
,[11] On the moments of the sum-of-digits function, in: Applications of Fibonacci Numbers 5 (1993), 263-271 | MR | Zbl
, , , and ,[12] Contributions to digit expansions with respect to linear recurrences, J. Number Th. 36 (1990), 160-169. | MR | Zbl
and ,[13] a-Expansions, linear recurrences, and the sum-of-digits function, manuscripta math. 70 (1991), 311-324. | MR | Zbl
and ,[14] An extension of a theorem by Cheo and Yien concerning digital sums, Fibonacci Q. 29 (1991), 145-149. | MR | Zbl
and ,[15] On the variance of the sum of digits function, Lecture Notes Math. 1452 (1990), 112-116. | MR | Zbl
,[16] On the,β-expansion of real numbers, Acta Math. Acad. Sci. Hung., 12 (1961), 401-416. | Zbl
,[17] On digit expansions with respect to linear recurrences, J. Number Th. 33 (1989), 243-256. | MR | Zbl
and ,[18] The joint distribution of the binary digits of integer multiples, Acta Arith. 43 (1984), 391-415. | MR | Zbl
,[19] The joint distribution the digits of certain integer s-tuples, Studies in pure mathematics, Mem. of P. Turan (1983), 605-622. | MR | Zbl
,[20] An explicit expression for binary digital sums, Meth. Mag. 41 (1968), 21-25. | MR | Zbl
,