Soit
Let
@article{JTNB_1997__9_2_371_0, author = {Aleksandar Ivi\'c}, title = {On the number of subgroups of finite abelian groups}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {371--381}, publisher = {Universit\'e Bordeaux I}, volume = {9}, number = {2}, year = {1997}, zbl = {0905.11040}, mrnumber = {1617404}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_371_0/} }
TY - JOUR AU - Aleksandar Ivić TI - On the number of subgroups of finite abelian groups JO - Journal de théorie des nombres de Bordeaux PY - 1997 SP - 371 EP - 381 VL - 9 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_371_0/ LA - en ID - JTNB_1997__9_2_371_0 ER -
Aleksandar Ivić. On the number of subgroups of finite abelian groups. Journal de théorie des nombres de Bordeaux, Tome 9 (1997) no. 2, pp. 371-381. https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_371_0/
[1] Average order of certain functions connected with arithmetic of matrices, J. Indian Math. Soc. 59 (1993), 97-106. | MR | Zbl
,[2] On the number of subgroups of finite Abelian groups, Abh. Math. Sem. Univ. Hamburg, in press. | MR | Zbl
and ,[3] On the asymptotic behaviour of the number of subgroups of finite abelian groups, Archiv der Mathematik 69 (1997), 95-104. | MR | Zbl
and ,[4] The Riemann zeta-function, John Wiley & Sons, New York (1985). | MR | Zbl
,[5] The general divisor problem, J. Number Theory 27 (1987), 73-91. | MR | Zbl
,[6] Divisor problems of 4 and 3 dimensions, Acta Arith. 73 (1995), 249-269. | MR | Zbl
,[7] On the number of subgroups of finite Abelian groups, Proc. Conf. Analytic and Elementary Number Theory (Vienna, July 18-20, 1996), Universität Wien & Universität für Bodenkultur, Eds. W.G. Nowak and J. Schoißengeier, Wien (1996), 181-188. | Zbl
,[8] Progress towards a conjecture on the mean value of Titchmarsh series, Recent Progress in Analytic Number Theory, Academic Press, London 1 (1981), 303-318. | MR | Zbl
,[9] On the Mean- Value and Omega-Theorems for the Riemann zeta-function, Tata Institute of Fund. Research, Bombay, 1995. | MR | Zbl
,