Let
Soit
@article{JTNB_1997__9_2_371_0,
author = {Aleksandar Ivi\'c},
title = {On the number of subgroups of finite abelian groups},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {371--381},
year = {1997},
publisher = {Universit\'e Bordeaux I},
volume = {9},
number = {2},
zbl = {0905.11040},
mrnumber = {1617404},
language = {en},
url = {https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_371_0/}
}
TY - JOUR AU - Aleksandar Ivić TI - On the number of subgroups of finite abelian groups JO - Journal de théorie des nombres de Bordeaux PY - 1997 SP - 371 EP - 381 VL - 9 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_371_0/ LA - en ID - JTNB_1997__9_2_371_0 ER -
Aleksandar Ivić. On the number of subgroups of finite abelian groups. Journal de théorie des nombres de Bordeaux, Tome 9 (1997) no. 2, pp. 371-381. https://jtnb.centre-mersenne.org/item/JTNB_1997__9_2_371_0/
[1] , Average order of certain functions connected with arithmetic of matrices, J. Indian Math. Soc. 59 (1993), 97-106. | Zbl | MR
[2] and , On the number of subgroups of finite Abelian groups, Abh. Math. Sem. Univ. Hamburg, in press. | Zbl | MR
[3] and , On the asymptotic behaviour of the number of subgroups of finite abelian groups, Archiv der Mathematik 69 (1997), 95-104. | Zbl | MR
[4] , The Riemann zeta-function, John Wiley & Sons, New York (1985). | Zbl | MR
[5] , The general divisor problem, J. Number Theory 27 (1987), 73-91. | Zbl | MR
[6] , Divisor problems of 4 and 3 dimensions, Acta Arith. 73 (1995), 249-269. | Zbl | MR
[7] , On the number of subgroups of finite Abelian groups, Proc. Conf. Analytic and Elementary Number Theory (Vienna, July 18-20, 1996), Universität Wien & Universität für Bodenkultur, Eds. W.G. Nowak and J. Schoißengeier, Wien (1996), 181-188. | Zbl
[8] , Progress towards a conjecture on the mean value of Titchmarsh series, Recent Progress in Analytic Number Theory, Academic Press, London 1 (1981), 303-318. | Zbl | MR
[9] , On the Mean- Value and Omega-Theorems for the Riemann zeta-function, Tata Institute of Fund. Research, Bombay, 1995. | Zbl | MR