We give exhaustive list of biquadratic fields and without -exotic symbol, i.e. for which the -rank of the Hilbert kernel (or wild kernel) is zero. Such are logarithmic principals [J3]. We detail an exemple of this technical numerical exploration and quote the family of theories and results we utilize. The -rank of tame, regular and wild kernel of -theory are connected with local and global problem of embedding in a -extension. Global class field theory can describe the -rank of the Hilbert kernel and reveals existence of symbols on not given by local class field theory.
@article{JTNB_1994__6_2_459_0,
author = {Herv\'e Thomas},
title = {Trivialit\'e du $2$-rang du noyau hilbertien},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {459--483},
year = {1994},
publisher = {Universit\'e Bordeaux I},
volume = {6},
number = {2},
zbl = {0822.11079},
mrnumber = {1360655},
language = {fr},
url = {https://jtnb.centre-mersenne.org/item/JTNB_1994__6_2_459_0/}
}
Hervé Thomas. Trivialité du $2$-rang du noyau hilbertien. Journal de théorie des nombres de Bordeaux, Tome 6 (1994) no. 2, pp. 459-483. https://jtnb.centre-mersenne.org/item/JTNB_1994__6_2_459_0/
[BT] and , The Milnor ring of a global field, (with an appendix by J. Tate), in Algebraic K-theory II. Lecture Notes in Mathematics, 342, Springer-Verlag, 1973. Berlin-Heidelberg- New York. | Zbl | MR
[BP] et , Γ-extensions et invariants cyclotomiques, Ann. scient. Éc. Norm. Sup. 5 (1972), 517-548. | Zbl | Numdam
[BS] and , On Sylow 2-subgroups of K2OF for quadratic number fields F, J. reine angew. Math. 331 (1982), 104-113. | Zbl | MR
[Br] , On the units of algebraic number field, Mathematika 14 (1967), 121-124. | Zbl | MR
[Co] , p-adic L-functions and Iwasawa theory, in Durham symposium in algebraic number field, (A. Frôlich editor), Academic Press, 1977. New York, London. | Zbl | MR
[CH] and , A comparison theorem for the 2-rank of K2D, Contemporary Mathematics 55, Part II (1986), 411-420. | Zbl | MR
[Ga] , A finiteness theorem for K2 of a number field, Annals of Math. 94 (1971), 534-548. | Zbl | MR
[Gi] , Formulations de la conjecture de Leopoldt et étude d'une condition suffisante, Abh. Math. Sem. Hambourg 48 (1979), 125-138. | Zbl | MR
[G1] , Groupe de Galois de la p-extension abélienne p-ramifiée maximale d'un corps de nombres, J. reine angew. Math. 333 (1982), 86-132. | Zbl | MR
[G2] , Plongements kummeriens dans les Zp-extensions, Compositio Math. 55 (1985), 383-396. | Zbl | MR | Numdam
[GJ] et , Sur les corps de nombres réguliers, Math. Z. 202 (1989), 343-365. | Zbl | MR
[J1] , L'arithmétique des l-extensions, (thèse) Pub. Math. Fac. Sci. Besançon, Théor. Nombres 1984-1985 & 1985-1986 (1986), 1-348. | Zbl | MR
[J2] , Sur les conjectures de Leopoldt et Gross, in Journées arithmétiques de Besançon, Astérisque 147-148 (1987), 107-120. | Zbl | MR
[J3] , La théorie de Kummer et le K2 des corps de nombres, J. Théor. Nombres Bordeaux 6 (1994).
[J4] , Sur le noyau sauvage des corps de nombres, Acta Arith. 67 (1994), 335-348. | Zbl | MR
[KC] et , On K2 and Zl- extensions of numbers fields, Amer. J. Math. 100 (1978), 177-196. | Zbl | MR
[Ma] , Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. scient. Éc. Norm. Sup. 4 2 (1969), 1-62. | Zbl | MR | Numdam
[MN] & , Sur l'arithmétique des corps de nombres p-rationnels, Sém. Th. des Nbres Paris (1987/1988), Prog. Math. 102 (1990), 155-197. | Zbl | MR
[Ti] , Symbols in arithmetics, Actes Congrès intern. math., Tome 1 (1970), 201-211. | Zbl | MR
[T2] , Relation between K2 and Galois cohomology, Invent. Math. 36 (1976), 257-274. | Zbl | MR
[Th] , Premier étage d'une Zl-extension, Manuscripta Math. 81 (1993), 413-435. | Zbl | MR
[Wh] , Integers of biquadratic fields, Canad. Math. Bull. 13 (1970), 519-528. | Zbl | MR
[Wi] , The Iwasawa conjecture for totally real fields, Annals of Math. 131 (1990), 493-540. | Zbl | MR