@article{JTNB_1993__5_1_1_0, author = {Dominique Barbolosi}, title = {Automates et fractions continues}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--22}, publisher = {Universit\'e Bordeaux I}, volume = {5}, number = {1}, year = {1993}, zbl = {0817.11039}, mrnumber = {1251225}, language = {fr}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1993__5_1_1_0/} }
Dominique Barbolosi. Automates et fractions continues. Journal de théorie des nombres de Bordeaux, Volume 5 (1993) no. 1, pp. 1-22. https://jtnb.centre-mersenne.org/item/JTNB_1993__5_1_1_0/
[1] Fractions continues à quotients partiels impairs, propriétés arithmétiques et ergodiques, Thèse, Université de Provence, (janvier 1988).
,[2] Über eine besondere Art der Kettenbruchentwicklung reeller Grössen, Acta Math. 12 (1889), 367-405. | JFM
,[3] Metric and Arithmetic Results for Continued Fraction Expansions, Thèse, Université d'Amsterdam, (avril 1990), (page 157).
,[4] Addition au mémoire sur la résolution des équations numériques, Mem. Ber.(= Oeuvres, II) 24 (1970).
,[5] Über die Länge von Kettenbrüche mit ungeraden Teilnennern, Abh. Braunschweig. Wiss. Ges. 32 (1981), 61-69. | MR | Zbl
,[6] Ein Heilbronn-Satz für Kettenbrüchen mit ungeraden Teilnennern, Math. Nachr. 101 (1981), 295-307. | MR | Zbl
,[7] On the metrical theory of continued fraction with odd partial quotients. Topics in classical number theory, I, II, (Budapest 1981), Colloq. Math. Soc. Janos Bolyai, (North Holland) 34 (1984), 1371-1418. | MR | Zbl
,[8] Continued fractions with odd and even partial quotients, Arbeitsbericht Math. Instit. der Un. Salzburg 4 (1982), 59-70.
,[9] A theorem of Kuzmin-Levy type for continued fractions with odd partial quotients, Arbeitsbericht Math. Instit. der Un. Salzburg 4 (1982), 45-50. | Zbl
,[10] On the approximation by continued fractions with odd and even partial quotients, Mathematisches Institut Salzburg, Arbeitsbericht 1-2 (1984), 105-114.
,[11] Die Lehre von den Kettenbrüchen, Chelsea Publ. Comp., New-York, 1929. | JFM | MR
,