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The size function for quadratic extensions of
complex quadratic fields

par Ha Thanh Nguyen TRAN

Résumé. La fonction h0 pour un corps de nombre est un ana-
logue de la dimension des espaces vectoriels de Riemann–Roch des
diviseurs sur une courbe algébrique. Dans cet article, nous mon-
trons une conjecture de van der Geer et Schoof sur la maximalité
de h0 au diviseur d’Arakelov trivial pour les extensions quadra-
tiques de corps quadratiques imaginaires.

Abstract. The function h0 for a number field is an analogue
of the dimension of the Riemann–Roch spaces of divisors on an
algebraic curve. In this paper, we prove the conjecture of van der
Geer and Schoof about the maximality of h0 at the trivial Arakelov
divisor for quadratic extensions of complex quadratic fields.

1. Introduction

In [7], van der Geer and Schoof introduced the function h0 for a number
field F that is also called the “size function” for F (see [5, 6, 8, 9]). This
function is well defined on the Arakelov class group Pic0

F of F (see [12]).
Van der Geer and Schoof also conjectured concerning the maximality of h0

as follows.

Conjecture. Let F be a number field that is Galois over Q or over an
imaginary quadratic number field. Then the function h0 on Pic0

F assumes
its maximum in the trivial class OF .

Francini in [5] and [6] has proved this conjecture for quadratic fields and
certain pure cubic fields. In this paper, we prove that this conjecture holds
for all quadratic extensions of complex quadratic fields.

Manuscrit reçu le 7 avril 2015, accepté le 7 novembre 2015.
Mathematics Subject Classification. 11R16, 11R11, 11R55, 11R40.
Mots-clefs. Arakelov divisor, effectivity divisor, size function, h0, line bundle.
I would like to thank René Schoof for discussion and very valuable comments. I also would like

to thank Wen-Ching Li and the National Center for Theoretical Sciences (NCTS) for supporting
and hospitality during the fall 2014.
This research was partially supported by the Academy of Finland (grants #276031, #282938,
and #283262). The support from the European Science Foundation under the COST Action
IC1104 is also gratefully acknowledged.



244 Ha Thanh Nguyen Tran

Theorem 1.1. Let F be a quadratic extension of a complex quadratic field.
Then the function h0 on Pic0

F has its unique global maximum at the trivial
class D0 = (OF , 1).

Let F be a quadratic extension of a complex quadratic field K. Recall
that Pic0

F is a topological group with the connected component of identity
denoted by T0 (see Section 2). We use the condition F is Galois over K to
show that h0 is symmetric on T0 (see Lemma 3.4). In general, this is not
true for quartic fields that do not have any imaginary quadratic subfield.
For instance, it is false and the conjecture does not hold in case of the totally
complex quartic field defined by the polynomial x4−x+1 or x4 +x2−x+1.

Since F is a totally quartic fields, the group of units O∗F has rank 1. So,
it has a fundamental unit ε. We assume that |ε| ≥ 1. Basically, we follow
the proofs of Francini (see [5, 6]). Beside that, for a quadratic extensions of
a complex quadratic field, the fundamental unit ε can be quite small. We
need two more steps in Section 5.2 and Section 6 compared with Francini’s
proofs. To prove Theorem 1.1, we show that h0(D) < h0(D0) for all D ∈
Pic0

F . We distinguish two cases: D is not on T0 (Section 4) and D is on
T0. In the second case, we consider separably |ε| ≥ 1 +

√
2 (Section 5) and

when |ε| < 1 +
√

2 (Section 6).
For the convenience of the reader, we give a brief introduction to Arakelov

divisors, Pic0
F and the function h0 in Section 2.

2. Preliminaries

In this part we briefly recall the definitions of Arakelov divisors, the
Arakelov class group and the function h0 of a number field. See [12, 7] for
full details.

Let F be a number field of degree n and let r1, r2 the number of real
and complex infinite primes (or infinite places) of F . Let ∆ and OF be the
discriminant and the ring of integers of F respectively.

2.1. Arakelov divisors. Let FR := F ⊗Q R '
∏
σ realR ×

∏
σ complexC

where σ’s are the infinite primes of F . Then FR is an étale R-algebra with
the canonical Euclidean structure given by the scalar product

〈u, v〉 := Tr(uv) for any u = (uσ), v = (vσ) ∈ FR.

The norm of an element u =
∏
σ uσ of FR is defined by N(u) :=

∏
σ real uσ ·∏

σ complex|uσ|
2.

Let I be a fractional ideal of F . Each element f of I is mapped to
the vector (σ(f))σ in FR. For any vector u in FR and f ∈ I, we have
uf = (uσσ(f))σ ∈ FR, so ‖uf‖2 =

∑
σ deg(σ)u2

σ|σ(f)|2. Here deg(σ) is
equal to 1 or 2 depending on whether σ is real or complex.
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Definition 2.1. An Arakelov divisor is a pair D = (I, u) where I is a
fractional ideal and u is an arbitrary unit in

∏
σ R∗+ ⊂ FR.

All of Arakelov divisors of F form an additive group denoted by DivF .
The degree of D = (I, u) is defined by deg(D) := logN(u)N(I). We asso-
ciate toD the lattice uI = {ux : x ∈ I} ⊂ FR with the metric inherited from
FR (see about ideal lattices in [1]). For each f ∈ I, by putting ‖f‖D := ‖uf‖,
we obtain a scalar product on I that makes I an ideal lattice as well [12,
Section 4]. To each element f ∈ F ∗ is attached a principal Arakelov divisor
(f) = (f−1OF , |f |) where f−1OF is the principal ideal generated by f−1

and |f | = (|σ(f)|)σ ∈ FR. It has degree 0 by the product formula.

2.2. The Arakelov class group. The set of all Arakelov divisors of de-
gree 0 form a group, denoted by Div0

F . Similar to the Picard group of an
algebraic curve, we have the following definition.

Definition 2.2. The Arakelov class group Pic0
F is the quotient of Div0

F by
its subgroup of principal divisors.

Each v = (vσ) ∈ ⊕σR can be embedded into DivF as the divisor Dv =
(OF , u) with u = (e−vσ)σ. Denote by (⊕σR)0 = {(vσ) ∈ ⊕σR : deg(Dv) = 0}
and Λ = {(log|σ(ε)|)σ : ε ∈ O∗F }. Then Λ is a lattice contained in the vector
space (⊕σR)0. We define

T0 = (⊕σR)0/Λ.

By Dirichlet’s unit theorem, T0 is a compact real torus of dimension r1 +
r2− 1 [2, Section 4.9]. Denoting by ClF the class group of F , the structure
of Pic0

F can be seen by the following proposition.

Proposition 2.3. The map that sends each class of divisor (I, u) to the
class of ideal I is a homomorphism from Pic0

F to the class group ClF of F .
It induces the exact sequence

0 −→ T0 −→ Pic0
F −→ ClF −→ 0.

Proof. See Proposition 2.2 in [12]. �

Thus, the group T0 is the connected component of the identity of the
topological group Pic0

F . Each class of Arakelov divisors in T0 is represented
by a divisor of the form D = (OF , u) for some u ∈

∏
σ R∗+. Here u is unique

up to multiplication by units ε ∈ O∗F [12, Section 6].

2.3. The function h0 of a number field. LetD = (I, u) be an Arakelov
divisor of F . We denote by

k0(D) =
∑
f∈I

e−π‖f‖
2
D and h0(D) = log(k0(D)).
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The function h0 is well defined on Pic0
F and analogous to the dimension

of the Riemann-Roch space H0(D) of a divisor D on an algebraic curve.
See [7] for full details.

3. Some results

From now on, we fix a quadratic extension F of some complex qua-
dratic field K. Let τ : F −→ F be the automorphism of F that gener-
ates Gal(F |K). Assume that F = Q(β) for some β ∈ F . We denote by
σ : β 7−→ β an infinite prime of F . Then σ′ = σ ◦ τ is the second infinite
prime. Moreover, we identify F with σ(F ) in this paper.

Let D = (I, u) be an Arakelov divisor of degree 0 of F with L = uI the
ideal lattice associated to D. We denote by λ the length of the shortest
vectors of L.

Denote by Bt = {f ∈ L : M ≤ ‖f‖2 ≤ t} for each t > M ≥ λ2. We first
prove the following lemma.

Lemma 3.1. For each t > M ≥ λ2 ≥ a2 with a > 0, we have

#Bt ≤
(

2
√
t

a
+ 1

)4

−
(

2
√
M

a
− 1

)4

.

Proof. Let Bt = {f ∈ L : M ≤ ‖f‖2 ≤ t} for each t > M . The balls with
centers in x ∈ Bt and radius λ/2 are disjoint. Their union is contained in
the (hyper) annular disk

{x ∈ FR :
√
M − λ/2 ≤ ‖x‖ ≤

√
t+ λ/2}.

By computing their volumes, we get that(
λ

2

)4
#Bt ≤

(√
t+ λ

2

)4
−
(√

M − λ

2

)4
.

Dividing by
(
λ
2

)4
, we get

#Bt ≤
(

2
√
t

λ
+ 1

)4

−
(

2
√
M

λ
− 1

)4

.

Since this bound for #Bt is a decreasing function in λ and λ ≥ a, the
lemma is proved. �

Lemma 3.2. Let M ≥ λ2 ≥ a2 > 0 with a > 0. Then

∑
f∈L
‖f‖2≥M

e−π‖f‖
2
≤ π

∫ ∞
M

(2
√
t

a
+ 1

)4

−
(

2
√
M

a
− 1

)4
 e−πt dt.
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Proof. For each t > M , denote by S the sum on the left side of the lemma,
we have

S =
∑
f∈L
‖f‖2≥M

∫ ∞
‖f‖2

πe−πt dt ≤ π
∫ ∞
M

#Bte−πt dt.

Using Lemma 3.1, we get the result. �

Corollary 3.3. Assume λ2 ≥ 4. Then we have∑
f∈L

‖f‖2≥4
√

2

e−π‖ux‖
2
< 2.6729 · 10−6 and

∑
f∈L

‖f‖2≥4
√

3

e−π‖ux‖
2
< 6.3067 · 10−8.

Proof. Use Lemma 3.2 with a = 2,M = 4
√

2 for the first sum andM = 4
√

3
for the second sum. �

Let D = (OF , u) be an Arakelov divisor of degree 0. Then N(u) = 1
and so u has the form (s, 1/s) for some s ∈ R+. Let x ∈ OF \{0}. Then
‖ux‖2 = 2s2|x|2 + 2|σ′(x)|2/s2 and N(ux) = |x|2|σ′(x)|2 = N(x) > 0.
Therefore, we have that ‖ux‖2 = 2s2|x|2 + 2N(x)/(s2|x|2).

Lemma 3.4. Let F be a quadratic extension of some complex quadratic
field K. Then h0 is symmetric on T0.

Proof. Let D = (OF , u) ∈ T0 with u = (s, 1/s) for some s ∈ R+. Let τ
be the automorphism of F that generates Gal(F |K). Then τ switches the
infinite primes of F . Therefore, τ(D) = τ((OF , (s, 1/s))) = (OF , (1/s, s)) =
−D. So ‖x‖2D = ‖τ(x)‖2τ(D) for all x ∈ OF . Thus, the lattices associated to
D and τ(D) are isometric [12, Section 4]. Hence, k0(D) = k0(−D). �

For each j = 2, 3 and s ∈ [0.8722, 1.1465], we denote by

Bj(s) = {x ∈ OF : |N(x)| = j and ‖ux‖2 < 8}.

Then we have the following results.

Lemma 3.5. Let x ∈ Bj(s) for j = 2, 3. Then ‖x‖2 < 11 for all s ∈
[0.8722, 1/0.8722].

Proof. We have ‖ux‖2 = 2s2|x|2 + 2N(x)/(s2|x|2) ≥ ‖x‖2 × 0.87222 since
s ∈ [0.8722, 1/0.8722]. If x ∈ Bj(s) then ‖ux‖2 < 8. Hence ‖x‖2 <
8/0.87222 < 11. �

Proposition 3.6. Assume that F has a fundamental unit ε with |ε| ≥
1 +
√

2. Then for all s ∈ [0.8722, 1/0.8722], each set B2(s) and B3(s) has
at most 30 elements.
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Proof. For each j = 2, 3, let mj = #Bj(s). All elements in Bj(s) generate
some prime ideal of norm j. Since there are at most 4 ideals of norm j, this
means that mj/4 of those elements generate the same ideal. This implies
that their quotients are units. So there are mj/4 different units. But the
unit group is generated by ε and ω roots of unity. This means that one of
those mj/4 units, say ε1, must be ±εk with k > mj

4ω .
But k cannot be too large, because ε is the quotient of two small elements

x and y in Bj(s). We have

‖x/y‖2 = 2|x/y|2 + 2|σ′(x)/σ′(y)2|

≤ (2|x|2 + 2|σ′(x)|2)(1/|y|2 + 1/|σ′(y)|2) = 1
2j ‖x‖

2‖y‖2.

The last equality is because 1/|y|2 +1/|σ′(y)|2 = (2|y|2 +2|σ′(y)|2)/(2N(y))
and N(y) = j. In fact, for each j = 2, 3, we know 1

2j ‖x‖
2‖y‖2 < 112

4 by
Lemma 3.5. Then

(3.1) 2|ε|2k + 2
|ε|2k

= ‖εk‖2 = ‖x/y‖2 < 1
2j ‖x‖

2‖y‖2 < 112

4 .

Since |ε| ≥ 1 +
√

2, the inequality in (3.1) implies that k ≤ 1. Moreover,
it is known that F has at most 8 roots of unity since the fundamental unit
|ε| ≥ 1+

√
2. So ω ≤ 8. This and the inequality mj

4ω < k ≤ 1 lead tomj < 32.
Since the number of elements in Bj(s) is always even, Bj(s) has at most
30 elements. �

4. Case 1: D is not on T0

Proposition 4.1. Let D be a class of Arakelov divisors in Pic0
F . If D is

not on T0 then k0(D) < k0(D0) where D0 = (OF , 1) is the trivial divisor.

Proof. Since D is not on T0, we can assume that D has the form (I, u)
where I is not principal and u ∈ (R∗+)2.

Let x ∈ I\{0}. Then |N(x)|
N(I) ≥ 2 because I is not principal. In addition,

deg(D) = 0, so N(I)N(u) = 1. Therefore

‖ux‖2 ≥ 4|N(ux)|2/4 = 4|N(u)N(x)|1/2 = 4
( |N(x)|
N(I)

)1/2
≥ 4
√

2.

Hence, we obtain the following.
k0(D) = 1 +

∑
x∈I\{0}

e−π‖ux‖
2

= 1 +
∑

f∈uI\{0}
‖f‖2≥4

√
2

e−π‖f‖
2
.

and λ2 ≥ 4
√

2 where λ is the length of the shortest vectors of the lattice
uI. Corollary 3.3 implies that

k0(D) < 1 + 2.67287 · 10−6.
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On the other hand, we have
k0(D0) > 1 + 2e−4π > 1 + 6.9 · 10−6.

Thus, k0(D0) > k0(D). �

5. Case 2: D is on T0 and |ε| ≥ 1 +
√

2

We can assume that F has a fundamental unit ε for which |ε| > 1. From
now on, we fix this ε.

Let D = (OF , u) ∈ T0. Here u has the form (s, 1/s) for some s ∈ R∗+. By
definition of T0 (Section 2.2), it is sufficient to consider the case in which
s ∈ [|ε|−1/2, |ε|1/2]. We have three cases.

5.1. Case 2a: s ∈ [|ε|−1/2, 0.8722) ∪ (1.1465, |ε|1/2].

Proposition 5.1. If D = (OF , u) is on T0 where u = (s, s−1) and s ∈
[|ε|−1/2, 0.8722) ∪ (1.1465, |ε|1/2] then k0(D) < k0(D0).
Proof. We have k0(D) = S1 + S′1 with

S1 =
∑
x∈OF

‖ux‖2<4
√

2

e−π‖ux‖
2

and S′1 =
∑
x∈OF

‖ux‖2≥4
√

2

e−π‖ux‖
2
.

Let x ∈ OF \{0}. Then N(ux) = N(x) ≥ 1 since N(u) = 1. We have

‖ux‖2 ≥ 4|N(ux)|2/4 = 4|N(x)|1/2 ≥ 4.
Thus, λ2 ≥ 4 where λ is the length of the shortest vectors of the lattice
uOF . Corollary 3.3 says that S′1 < 2.673 · 10−6.

Now let x ∈ OF \{0} such that ‖ux‖2 < 4
√

2. Then we must have
|N(x)| = 1. So x = ζ · εm for some integer m and some root of unity ζ

of F . If |m| ≥ 1 then ‖uεm‖2 ≥ 4
√

2. Hence m = 0, so x is a root of unity
of F . Then so S1 ≤ 1+ω ·e‖u‖2 = 1+ω ·e−π(2s2+2/s2) where ω is the number
of roots of unity of F . For ω ≥ 2, we obtain that

k0(D) ≤ 1 + ω · e−π(2s2+2/s2) + 2.673 · 10−6 ≤ 1 + ω · e−4π

for all s ∈ [|ε|−1/2, 0.8722) ∪ (1.1465, |ε|1/2].
Since k0(D0) > 1 + ω · e−4π, we get k0(D0) > k0(D). �

5.2. Case 2b: s ∈ [0.8722, 0.9402) ∪ (1.0637, 1.1465].

Proposition 5.2. If D = (OF , u) is on T0 where u = (s, s−1) and s ∈
[0.8722, 0.9402) ∪ (1.0637, 1.1465] then k0(D) < k0(D0).
Proof. We have k0(D) = S1 + S2 + S′2 where

S2 =
∑
x∈OF

4
√

2≤‖ux‖2<4
√

3

e−π‖ux‖
2

and S′2 =
∑
x∈OF

‖ux‖2≥4
√

3

e−π‖ux‖
2
,
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and S1 as in the proof of Proposition 5.1 and S1 ≤ 1 + ω · e−π(2s2+2/s2).
By Corollary 3.3, we obtain that S′2 < 6.3067 · 10−8.
Now we compute S2. Let x ∈ OF \{0} such that 4

√
2 ≤ ‖ux‖2 < 4

√
3.

Then |N(x)| is equal to 1 or 2. We claim that |N(x)| 6= 1. Indeed, if not
then x = ζ · εm for some integer m and some root of unity ζ of F . If m 6= 0
then ‖uεm‖2 > 4

√
3 (since |ε|2 · 0.87222 ≥ (1 +

√
2)2 · 0.87222 >

√
2 +
√

3)
and if m = 0 then ‖ux‖2 = ‖u‖2 < 4

√
2 for all s ∈ [0.8722, 0.9546) ∪

(1.0476, 1.1465]. This contradicts the fact that 4
√

2 ≤ ‖ux‖2 < 4
√

3. Thus,
|N(x)| = 2. By Proposition 3.6, there are at most 30 possibilities for x.
Therefore

S2 ≤ 30 max
x∈OF

4
√

2≤‖ux‖2<4
√

3

e−π‖ux‖
2
≤ 30e−4

√
2π.

Then
k0(D) ≤ 1 + ω · e−π(2s2+2/s2) + 30e−4

√
2π + 6.3067 · 10−8 ≤ 1 + ω · e−4π

for all s ∈ [0.8722, 0.9402) ∪ (1.0637, 1.1465] and all ω ≥ 2. Since k0(D0) >
1 + ω · e−4π, the result follows. �

5.3. Case 2c: s ∈ [0.9402, 1.0637]. Let D = (OF , u) be an Arakelov
divisor of degree 0 with u = (s, 1/s).

For each m ∈ Z≥1, denote by

Bm = {x ∈ OF : 4
√
m ≤ ‖ux‖2 < 4

√
m+ 1}.

It is clear that N(x) ≤ m for all x ∈ Bm because we know that ‖ux‖2 ≥
4N(ux)1/2 = 4N(x)1/2 [12, Proposition 3.1]. Now let

g(s) = k0(D) =
∑
x∈OF

e−π(‖ux‖2) =
∑
x∈OF

e−π(2s2|x|2+2N(x)/(s2|x|2)

for all s > 0. We prove that this function has its maxima at s = 1 on the
interval [0.9402, 1.0637]. In other words, we prove the following.

Proposition 5.3. We have g′(1)=0 and g′′(s)<0 for all s∈ [0.9402,1.0637].

Proof. Let s > 0 and denote by D = (OF , (s, 1/s)). Then D ∈ T0 and so
k0(D) = k0(−D) by Lemma 3.4. Hence we have g(s) = g(1/s). This implies
that g′(1) = 0, the first statement is proved.

Take the second derivative of g, we get

g′′(s) = 4π
s2

∑
x∈OF \{0}

G(s, x)

where

G(s, x) =
(
π‖ux‖4 − 16πN(x)− ‖ux‖

2

2 − 2N(x)
s2|x|2

)
e−π‖ux‖

2
.
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Let
Ti =

∑
x∈Bi

G(s, x) for i = 1, 2, 3 and T4 =
∑
x∈OF
‖ux‖2≥8

G(s, x).

Then g′′(s) = 4π
s2 (T1 + T2 + T3 + T4) because ‖ux‖ ≥ 4 for all x ∈ OF \{0}.

Therefore, in order to prove g′′(s) < 0 we show that T1 + T2 + T3 + T4 < 0.
This follows from Lemmas 5.4, 5.5, 5.6 and 5.7 below. �

Lemma 5.4. For all s ∈ [0.9402, 1.0637], we have
T4 < 3.9 · 10−7.

Proof. We have

T4 ≤
∑
x∈OF
‖ux‖2≥8

(
π‖ux‖4 − 16πN(x)− ‖ux‖

2

2

)
e−π‖ux‖

2
.

Therefore

T4 ≤
∑
x∈OF
‖ux‖2≥8

∫ ∞
‖ux‖2

(
π2t2 − 5πt

2 − 16π2 + 1
2

)
e−πt dt

≤ π
∫ ∞

8
#Bt

(
π2t2 − 5πt

2 − 16π2 + 1
2

)
e−πt dt

Since the shortest vectors of the lattice uOF have length λ ≥ 2, Lemma 3.1
says that

#Bt ≤
(

2
√
t

2 + 1
)4

−
(

2
√

8
2 − 1

)4

=
(√

t+ 1
)4
−
(√

8− 1
)4
.

Replace this bound for #Bt to the last integral and compute it, we obtain
the result. �

Lemma 5.5. For all s ∈ [0.9402, 1.0637], we have
T3 < 5.2 · 10−7.

Proof. Let x ∈ B3. It is easy to see that N(x) 6= 1 (see the proof of
Proposition 5.1), so N(x) is equal to 2 or 3. In other words, we have
B3 ⊂ B2(s) ∪B3(s).

If N(x) = 2 then ‖ux‖2 = 2s2|x|2 + 4/(s2|x|2). Let z = s2|x|2. Since
4
√

3 ≤ ‖ux‖2 < 8, we have z ∈ (2−
√

2,
√

3− 1] ∪ [
√

3 + 1, 2 +
√

2). Then
for all z in this interval, we have

G(s, x) =
(
(2z + 4/z)2 − 32z − 1/2(2z + 4/z)− 4/z

)
e−π(2z+4/z)

≤ 1.6 · 10−8.
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If N(x) = 3 then ‖ux‖2 = 2s2|x|2 + 6/(s2|x|2). Let z = s2|x|2. Since
4
√

3 ≤ ‖ux‖2 < 8, we get z ∈ (1, 3). Then for all z in this interval, we have

G(s, x) =
(
(2z + 6/z)2 − 32z − 1/2(2z + 6/z)− 6/z

)
e−π(2z+6/z)

≤ 1.3 · 10−9.

Proposition 3.6 says that B3 has at most 3 elements of norm 2 and at
most 30 elements of norm 3. Thus,

T3 ≤ 30 · 1.6 · 10−8 + 30 · 1.3 · 10−9 < 5.2 · 10−7. �

Lemma 5.6. For all s ∈ [0.9402, 1.0637], we have
T2 < 1.65 · 10−6.

Proof. Let x ∈ B2. Then N(x) ≤ 2. By an argument similar to the proof
of Proposition 5.1, we obtain that N(x) 6= 1, so N(x) = 2. Therefore
B2 ⊂ B2(s). Proposition 3.6 says that #B2 ≤ #B2(s) ≤ 30.

Let z = s2|x|2. Then z ∈ (
√

3 − 1,
√

3 + 1) since 4
√

2 ≤ ‖ux‖2 < 4
√

3.
Then so

G(s, x) =
(
(2z + 4/z)2 − 32z − 1/2(2z + 4/z)− 4/z

)
e−π(2z+4/z)

< 5.5 · 10−8.

Thus, T2 ≤ #B2 ·maxx∈B2 G(s, x) < 30 · 5.5 · 10−8 = 1.65 · 10−6. �

Lemma 5.7. For all s ∈ [0.9402, 1.0637], we have
T1 < −2.22 · 10−5.

Proof. Let x ∈ B1. Then we have N(x) = 1. As the proof of Proposition 5.1,
we have x is a root of unity of F . So T1 = ω ·G(s, 1) < −2.22 · 10−5 for all
s ∈ [0.9402, 1.0637] and all ω ≥ 2. �

6. Case 3: D is on T0 and |ε| < 1 +
√

2

With the notations in Section 5.3, it is obvious to see the following lemma.

Lemma 6.1. Let x ∈ OF . Then for all s ∈ [0.98, 1/0.98], we have
G(s, x) > 0 if e0.54/2 ≤ |x| ≤ 1 +

√
2 and G(s, x) < 0 if |x| = 1.

We consider 2 cases: When ε does not generate F and when ε generates F .

6.1. Case 3a: ε does not generate F . We prove the following proposi-
tion.

Proposition 6.2. Let F be a quadratic extension of some complex qua-
dratic subfield. Assume that F has a fundamental unit ε that does not gen-
erate F and |ε| < 1 +

√
2. Then k0 has its unique maximum at the trivial

divisor D0 on T0.



The size function for quadratic extensions of complex quadratic fields 253

We first prove the lemma below.

Lemma 6.3. Let F be a quadratic extension of some complex quadratic
subfield. Assume that F has the fundamental unit ε that does not generate
F and |ε| < 1 +

√
2. Then F contains the quadratic subfield K = Q(

√
5)

and ε = (1 +
√

5)/2. In particular, OF has no elements of norm 2 or 3.

Proof. The assumption that ε does not generate F implies that K = Q(ε)
is a real quadratic subfield of F . Let ∆K be the discriminant of K. Then

|ε| ≥
√

∆K +
√

∆K − 4
2 .

See [11]. Since |ε| < 1 +
√

2, we must have 4 ≤ ∆K ≤ 7. It is easy to check
that K = Q(

√
5) and ε = (1 +

√
5)/2. So the first statement is proved.

Now we suppose that there is an element element x of norm 2 or 3 in
OF . Then y = NF/K(x) is in the ring of integers OK of K and NK/Q(y) ∈
{2, 3}. This is impossible because 2 and 3 are inert in OK . Thus, the second
statement follows. �

We now prove Proposition 6.2.

Proof. By Lemma 6.3, we have ε = (1 +
√

5)/2. With the notations in
Section 5, we prove this proposition in 3 steps as Proposition 5.1, 5.2 and 5.3
respectively.
• Step 1: Let s ∈ [|ε|−1/2, 0.8608)∪ (1.1618, |ε|1/2]. Then using the same
proof as Proposition 5.1, we have k0(D) < k0(D0).
• Step 2: Let s ∈ [0.8608, 0.9770)∪(1.0235, 1.1618]. By Lemma 6.3, there
are no elements of norm 2 in B2. So, B1 and B2 only contain elements
of norm 1. Hence B1 ∪ B2 ⊂ {ζ, ζ · ε, ζ · ε−1} where ζ runs over the
roots of unity of F . This leads to

S1 + S2 ≤ 1 + ω · (e−π‖u‖
2

+ e−π‖uε‖
2

+ e−π‖uε
−1‖2

)
for all s ∈ [0.8608, 0.9770) ∪ (1.0235, 1.1618]. It is easy to check that
for all s in this interval and ω ≥ 2, we get

1 + ω · (e−π‖u‖
2

+ e−π‖uε‖
2

+ e−π‖uε
−1‖2

) + 6.31 · 10−8 ≤ 1 + ω · e−4π.

Since S′2 < 6.31 · 10−8 by Corollary 3.3, we obtain that
k0(D) = S1 + S2 + S′2 ≤ 1 + ω · e−4π < k0(D0).

• Step 3: We prove that g′′(s) < 0 for s ∈ [0.9770, 1.0235]. Lemma 6.3
says that there are no elements of norm 2 or 3 in B1, B2 and B3. So
their union is contained in {ζ, ζ ·ε, ζ ·ε−1} where ζ runs over the roots
of unity of F . In addition, 1 ∈ B1 for every s ∈ [0.9770, 1.0235]. By
Lemma 6.1, we obtain the following.
T1 + T2 + T3 ≤ ω · (G(s, 1) +G(s, ε) +G(s, ε−1)) < −2.4 · 10−5.
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We have T4 < 3.9·10−7 by Lemma 5.4, so g′′(s) = T1+T2+T3+T4 < 0
for all s ∈ [0.9770, 1.0235]. �

6.2. Case 3b: ε generates F . We prove the following proposition.

Proposition 6.4. Let F be a quadratic extension of some complex qua-
dratic subfield. Assume that F has a fundamental unit ε that generates F
and |ε| < 1 +

√
2. Then k0 has its maxima at the trivial divisor D0 on T0.

First, we prove the following results.

Lemma 6.5. Let F be a quadratic extension of some complex quadratic
subfield. Assume that F has the fundamental unit ε that generates F with
|ε| < 1 +

√
2. Then the discriminant of F is no more than 16384.

Proof. Since ε has norm 1, we can assume that its conjugates have the form
aeit1 , ae−it1 , 1

ae
it2 and 1

ae
−it2 where a = |ε| < 1+

√
2. Let A = 1

2(a2 +1/a2).
Then we have 1 ≤ A ≤ 3.

Because ε generates F , the set {1, ε, ε2, ε−1} contains linearly indepen-
dent elements of OF . So, the discriminant of this set is nonzero and at least
the discriminant of F . Thus, we have that

∆F ≤ 162(1−X2)(1− Y 2)(X2 + Y 2 − 2AXY +A2 − 1)2 = f(X,Y )
where X = cos(t1) and Y = cos(t2) are in [−1, 1].

The function f(X,Y ) is nonnegative and is zero on the boundary of the
square [−1, 1]2. We find the maximal value of this function on the open
square (−1, 1)2 as follows.

We have{
∂f
∂X = 0
∂f
∂Y = 0

⇐⇒
{
−3x3 − xy2 + 4Ax2y − (A2 − 3)x− 2Ay = 0
−3y3 − x2y + 4Axy2 − (A2 − 3)y − 2Ax = 0.

Now multiply the first by Y and the second by X and subtract, we get
(X2 − Y 2)(−2XY + 2A) = 0.

Since for every a we have A ≥ 1, it cannot happen that XY = A. So
X = Y or X = −Y . We can easily show that f(X,X) and f(X,−X) are
bounded by max{4(A+1)6, 162(A2−1)2}. Since A varies from 1 to 3, these
values are bounded by 16384. Thus, we have ∆F ≤ 16384. �

Lemma 6.6. There are 19 quadratic extensions F (up to isomorphic)of
complex quadratic fields of which the fundamental unit ε generates F and
|ε| < 1 +

√
2.

Proof. Let K be a complex quadratic subfield of F with the discriminant
∆K . By Lemma 6.5, we obtain that ∆F ≤ 16384. So, we have |∆K | ≤ 21
(see Section 2 in [4] for more details). Using this and Ford’s method in Sec-
tion 5 and 6 in [4], we can find all quadratic extensions of complex quadratic
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fields which have the discriminant at most 16384. Then by eliminating the
case in which |ε| ≥ 1 +

√
2 or ε does not generate F (see Lemma 6.3), we

obtain 19 quartic fields listed in Table 6.1 below. �

In Table 6.1, the second column contains the polynomials P defining the
quartic fields F and the third column contains their regulators RF . The
fourth column shows the discriminant of some complex quadratic subfieldK
of F . The seventh column contains upper bounds for g(s, ε) (see Lemma 6.9)
when s varies in the interval [0.98, 1/0.98]. Note that computing an upper
bound for g(s, ε) in Table 6.1 is easy since it depends only on s when
|ε| = eRF /2 is given. The fifth and sixth columns are the cardinalities of
the set B2(s) and B3(s) (that can be computed by using Lemma 6.7 and
Remark 6.8).

P RF ∆K #B2(s) #B3(s) g(s, ε) ≤
1 x4 − 3x3 + 9 0.5435 −3 0 0∗ −2.7 · 10−6

2 x4 − x3 + x+ 1 0.6330 −7 6∗ 0 −8.2 · 10−6

3 x4 + 16x+ 20 0.7328 −4 0∗ 0 −1.5 · 10−5

4 x4 − x3 + x2 + x+ 1 0.7672 −11 0 0∗ −1.7 · 10−5

5 x4 − x3 + 2x+ 1 0.8626 −3 0 0∗ −2.2 · 10−5

6 x4 + 8x+ 8 1.0613 −4 8∗ 0 −2.6 · 10−5

7 x4 − x3 + 3x2 + x+ 1 1.1989 −19 0 0 −2.6 · 10−5

8 x4 + 36 1.3170 −3;−4 0 0 −2.6 · 10−5

∆F = 144
9 x4 + 4x2 + 1 1.3170 −24 0 0 −2.6 · 10−5

∆F = 2304
10 x4 − x3 + 4x2 + x+ 1 1.4290 −23 0 0 −2.6 · 10−5

11 x4 − 3x3 + 4x2 + 1 1.4608 −3 0 0∗ −2.6 · 10−5

12 x4 + 7 1.4860 −7 4∗ 0 −2.6 · 10−5

13 x4 + 4x+ 5 1.5286 −4 4∗ 0 −2.6 · 10−5

14 x4 − x3 − x2 − 2x+ 4 1.5668 −3;−7 0 0 −2.6 · 10−5

15 x4 + 20 1.6169 −20 0 0 −2.6 · 10−5

16 x4 + 3 1.6629 −3 0 6∗ −2.6 · 10−5

17 x4 − x3 − 4x+ 5 1.6780 −11 0 0∗ −2.6 · 10−5

18 x4 − x3 + 4x2 − 6x+ 3 1.7366 −3 0 0∗ −2.6 · 10−5

19 x4 + 135 1.7400 −15 0 0 −2.6 · 10−5

Table 6.1.

Lemma 6.7. Let F be a quadratic extension of a complex quadratic subfield
K and let ∆K be the discriminant of K. Assume that B2(s) or B3(s) is
nonempty. Then ∆K ∈ {−3,−4,−7,−11}. Moreover, if ∆K ∈ {−3,−11}
then B2(s) = ∅ and if ∆K ∈ {−4,−7} then B3(s) = ∅.
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Proof. Assume that B2(s) or B3(s) is nonempty. Then there is an element
x of OF of norm NF/Q(x) ∈ {2, 3}. So the element y = NF/K(x) ∈ OK
also has norm 2 or 3. This means that there are some a, b ∈ Z such that
a2 + |∆K |b2 ∈ {8, 12}. It follows that |∆K | is at most 12. So the possible
values of ∆K are −3,−4,−7,−8 and −11. For ∆K ∈ {−3,−11}, the prime
2 is inert, so there are no elements of norm 2. In other words, we get
B2(s) = ∅. For ∆K ∈ {−4,−7}, the prime 3 is inert, so B3(s) = ∅. �

Remark 6.8. Let F be a quadratic extension of a complex quadratic subfield
K and let ∆K be the discriminant of K. By this lemma, we can check
whether F has B2(s) = ∅ or B3(s) = ∅ by checking if the value of ∆K

is in the set {−3,−4,−7,−11} (and this can be easily tested by using
sage). For example, the first quartic field in Table 6.1 contains a complex
quadratic subfield K with ∆K = −3, so we have B2(s) = ∅ and since the
seventh quartic field in Table 6.1 contains a complex quadratic field K with
∆K = −19, so we have B2(s) = B3(s) = ∅.

However, in some cases, the discriminant ∆K does not show whether
B2(s) orB3(s) is empty. For instance, for the first number field in Table 6.1,
we do not know how many elements B3(s) has. There are 12 such cases
(marked with ∗ in Table 6.1). So, we have to compute #B2(s) for the
quartic fields 2, 3, 6, 12 and 13 and compute #B3(s) for the quartic fields
1, 4, 5, 11, 16, 17 and 18 in Table 6.1.

For these quartic fields, to count the number of elements of B2(s) and
B3(s), we first find an LLL-reduced basis {b1, b2, b3, b4} of the lattice OF .
Let x ∈ Bj(s) with j = 2, 3. Then x = s1b1 + s2b2 + s3b3 + s4b4 for some
integers s1, s2, s3, s4. By Lemma 3.5, we have ‖x‖2 < 11. Since ‖b1‖ ≥
‖1‖ = 2, we have

|si| ≤ 23/2(3/2)4−i ‖x‖
‖b1‖

≤ 23/2(3/2)4−i
√

9.2
2 for all i = 1, 2, 3, 4.

See Section 12 in [10]. So

|s1| ≤ 15, |s2| ≤ 10, |s3| ≤ 7 and |s4| ≤ 4.

By computing 16 · 21 · 15 · 9 = 45360 possibilities of x (up to sign) obtained
from these values of s1, s2, s3, s4, then checking their norms, we can easily
obtain the cardinality of Bj(s).

Another method to compute the cardinalities of B2(s) and B3(s) is the
Fincke–Pohst algorithm [3, Algorithm 2.12] that is implemented in pari-gp
by the function qfminim.

Denote by

g(s, ε) = ω · (G(s, 1) +G(s, ε) +G(s, ε−1) +G(s, ε2) +G(s, ε−2)).
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Lemma 6.9. If F satisfies the following conditions.

(i) RF > 0.54;
(ii) For each s ∈ [0.98, 1/0.98], we have #Bj(s) ≤ 30 for j = 2, 3;
(iii) For all s ∈ [0.98, 1/0.98], we have g(s, ε) ≤ −2.6 · 10−6,

then g′′(s) < 0 for all s ∈ [0.98, 1/0.98].

Proof. Since RF > 0.54, we have ‖εmu‖2 ≥ 4
√

4 for all integers |m| ≥ 3
and s ∈ [0.98, 1/0.98]. Thus, if x ∈ Bi for i = 1, 2, 3 and N(x) = 1 then
x ∈ {ζ, ζ · ε, ζ · ε−1, ζ · ε2, ζ · ε−2} where ζ runs over the roots of unity of F .
This and the fact that 1 ∈ B1 together with Lemma 6.1 imply that

T1 + T2 + T3 ≤ g(s, ε) +
∑

x∈B2,N(x)6=1
G(s, x) +

∑
x∈B3,N(x)6=1

G(s, x).

Using condition (ii) and an argument similar to the proof of Lemmas 5.6,
5.5, we obtain that

∑
x∈B2,N(x)6=1G(s, x) ≤ 1.65 · 10−6 and∑

x∈B3,N(x)6=1G(s, x) ≤ 5.2 · 10−7.
By assumption (iii), we get g(s, ε) ≤ −2.6 · 10−6. Moreover, Lemma 5.4

says that T4 ≤ 3.9 · 10−7. Since g′′(s) = T1 + T2 + T3 + T4, the result
follows. �

Now we prove Proposition 6.4.

Proof. Lemma 6.6 says that there are only 19 quartic fields satisfying the
conditions of Proposition 6.4. They are given in Table 6.1.

We can prove that in this case, h0 has its unique global maximum at
D0 in 3 steps (see the proof of Proposition 6.2). The readers can easily
check Step 1 and Step 2 and see the maximum of h0 in Figure 6.1, 6.2, 6.3
and 6.4. In these figures, h0 is periodic and the period is the regulator of
the number field.

Here we only prove Step 3. In other words, we prove that h0 has its local
maximum at D0 on T0.

We have known that g′(1) = 0 (see the proof of Proposition 5.3). So
it is sufficient to prove that g′′(s) < 0 on the interval [0.98, 1/0.98]. By
Lemma 6.9, this can be done by checking 3 conditions (i), (ii) and (iii).
Table 6.1 shows that all 19 number fields satisfy these conditions. Therefore,
the result follows. �
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