In this paper we study the expansions of real numbers in positive and negative real base as introduced by Rényi, and Ito & Sadahiro, respectively. In particular, we compare the sets and of nonnegative -integers and -integers. We describe all bases for which and can be coded by infinite words which are fixed points of conjugated morphisms, and consequently have the same language. Moreover, we prove that this happens precisely for with another interesting property, namely that any linear combination of non-negative powers of the base with coefficients in is a -integer, although the corresponding sequence of digits is forbidden as a -expansion.
Nous étudions le développement des nombres réels en bases positive et negative, suivant les travaux de Rényi, et Ito & Sadahiro. Nous comparons les ensembles et des nombres -entiers non-negatifs et -entiers. Nous décrivons les bases pour lesquelles et sont codés par des mots infinis qui sont des points fixes de morphismes conjugés. De plus, nous démontrons que cela se produit précisement pour les nombres ayant la propriété suivante : toute combinaison linéaire de puissances non-négatives de la base , à coefficients dans , correspond à un -entier, même si la suite donnée de chiffres est interdite comme -développement.
Keywords: $(-\beta )$-expansion, $(-\beta )$-integer, confluent Parry number, spectrum, antimorphism, conjugacy.
@article{JTNB_2015__27_3_745_0, author = {Daniel Dombek and Zuzana Mas\'akov\'a and Tom\'a\v{s} V\'avra}, title = {Confluent {Parry} numbers, their spectra, and integers in positive- and negative-base number systems}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {745--768}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {3}, year = {2015}, doi = {10.5802/jtnb.922}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.922/} }
TY - JOUR AU - Daniel Dombek AU - Zuzana Masáková AU - Tomáš Vávra TI - Confluent Parry numbers, their spectra, and integers in positive- and negative-base number systems JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 745 EP - 768 VL - 27 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.922/ DO - 10.5802/jtnb.922 LA - en ID - JTNB_2015__27_3_745_0 ER -
%0 Journal Article %A Daniel Dombek %A Zuzana Masáková %A Tomáš Vávra %T Confluent Parry numbers, their spectra, and integers in positive- and negative-base number systems %J Journal de théorie des nombres de Bordeaux %D 2015 %P 745-768 %V 27 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.922/ %R 10.5802/jtnb.922 %G en %F JTNB_2015__27_3_745_0
Daniel Dombek; Zuzana Masáková; Tomáš Vávra. Confluent Parry numbers, their spectra, and integers in positive- and negative-base number systems. Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 3, pp. 745-768. doi : 10.5802/jtnb.922. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.922/
[1] S. Akiyama, « Cubic Pisot units with finite beta expansions », in Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, Berlin, 2000, p. 11-26. | MR | Zbl
[2] S. Akiyama & V. Komornik, « Discrete spectra and Pisot numbers », J. Number Theory 133 (2013), no. 2, p. 375-390. | MR | Zbl
[3] P. Ambrož, D. Dombek, Z. Masáková & E. Pelantová, « Numbers with integer expansion in the numeration system with negative base », Funct. Approx. Comment. Math. 47 (2012), no. part 2, p. 241-266. | MR | Zbl
[4] F. Bassino, « Beta-expansions for cubic Pisot numbers », in LATIN 2002: Theoretical informatics (Cancun), Lecture Notes in Comput. Sci., vol. 2286, Springer, Berlin, 2002, p. 141-152. | MR | Zbl
[5] J. Bernat, « Computation of for several cubic Pisot numbers », Discrete Math. Theor. Comput. Sci. 9 (2007), no. 2, p. 175-193 (electronic). | MR | Zbl
[6] Y. Bugeaud, « Sur la suite des nombres de la forme », Arch. Math. (Basel) 79 (2002), no. 1, p. 34-38. | MR | Zbl
[7] Č. Burdík, C. Frougny, J. P. Gazeau & R. Krejcar, « Beta-integers as natural counting systems for quasicrystals », J. Phys. A 31 (1998), no. 30, p. 6449-6472. | MR | Zbl
[8] K. Dajani, M. de Vries, V. Komornik & P. Loreti, « Optimal expansions in non-integer bases », Proc. Amer. Math. Soc. 140 (2012), no. 2, p. 437-447. | MR | Zbl
[9] D. Dombek, « Generating -integers by Conjugated Morphisms », in Local Proceedings of WORDS 2013, Turku, TUCS Lecture Notes, vol. 20, 2013, p. 14-25.
[10] M. Edson, « Calculating the numbers of representations and the Garsia entropy in linear numeration systems », Monatsh. Math. 169 (2013), no. 2, p. 161-185. | MR | Zbl
[11] P. Erdös, I. Joó & V. Komornik, « Characterization of the unique expansions and related problems », Bull. Soc. Math. France 118 (1990), no. 3, p. 377-390. | Numdam | MR | Zbl
[12] S. Fabre, « Substitutions et -systèmes de numération », Theoret. Comput. Sci. 137 (1995), no. 2, p. 219-236. | MR | Zbl
[13] D.-J. Feng & Z.-Y. Wen, « A property of Pisot numbers », J. Number Theory 97 (2002), no. 2, p. 305-316. | MR | Zbl
[14] C. Frougny, « Confluent linear numeration systems », Theoret. Comput. Sci. 106 (1992), no. 2, p. 183-219. | MR | Zbl
[15] C. Frougny & B. Solomyak, « Finite beta-expansions », Ergodic Theory Dynam. Systems 12 (1992), no. 4, p. 713-723. | MR | Zbl
[16] D. Garth & K. G. Hare, « Comments on the spectra of Pisot numbers », J. Number Theory 121 (2006), no. 2, p. 187-203. | MR | Zbl
[17] S. Ito & T. Sadahiro, « Beta-expansions with negative bases », Integers 9 (2009), p. A22, 239-259. | MR | Zbl
[18] C. Kalle, « Isomorphisms between positive and negative -transformations », Ergodic Theory Dynam. Systems 34 (2014), no. 1, p. 153-170. | MR | Zbl
[19] M. Lothaire, Combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 17, Addison-Wesley Publishing Co., Reading, Mass., 1983, A collective work by Dominique Perrin, Jean Berstel, Christian Choffrut, Robert Cori, Dominique Foata, Jean Eric Pin, Guiseppe Pirillo, Christophe Reutenauer, Marcel-P. Schützenberger, Jacques Sakarovitch and Imre Simon, With a foreword by Roger Lyndon, Edited and with a preface by Perrin, xix+238 pages. | MR | Zbl
[20] Z. Masáková & E. Pelantová, « Purely periodic expansions in systems with negative base », Acta Math. Hungar. 139 (2013), no. 3, p. 208-227. | MR | Zbl
[21] Z. Masáková, E. Pelantová & T. Vávra, « Arithmetics in number systems with a negative base », Theoret. Comput. Sci. 412 (2011), no. 8-10, p. 835-845. | Zbl
[22] Z. Masáková & T. Vávra, « Integers in number systems with positive and negative quadratic Pisot base », RAIRO Theor. Inform. Appl. 48 (2014), no. 3, p. 341-367. | Numdam | MR
[23] W. Parry, « On the -expansions of real numbers », Acta Math. Acad. Sci. Hungar. 11 (1960), p. 401-416. | MR | Zbl
[24] A. Rényi, « Representations for real numbers and their ergodic properties », Acta Math. Acad. Sci. Hungar 8 (1957), p. 477-493. | MR | Zbl
[25] W. Steiner, « On the structure of -integers », RAIRO Theor. Inform. Appl. 46 (2012), no. 1, p. 181-200. | MR
[26] W. P. Thurston, « Groups, tilings, and finite state automata », in Summer 1989 AMS Colloquium Lecture, American Mathematical Society, Boulder.
[27] T. Vávra, « On the Finiteness property of negative cubic Pisot bases », , 2014. | arXiv
Cited by Sources: