Nous étudions le développement des nombres réels en bases positive et negative, suivant les travaux de Rényi, et Ito & Sadahiro. Nous comparons les ensembles
In this paper we study the expansions of real numbers in positive and negative real base as introduced by Rényi, and Ito & Sadahiro, respectively. In particular, we compare the sets
Mots-clés :
Daniel Dombek 1 ; Zuzana Masáková 2 ; Tomáš Vávra 2
@article{JTNB_2015__27_3_745_0, author = {Daniel Dombek and Zuzana Mas\'akov\'a and Tom\'a\v{s} V\'avra}, title = {Confluent {Parry} numbers, their spectra, and integers in positive- and negative-base number systems}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {745--768}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {3}, year = {2015}, doi = {10.5802/jtnb.922}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.922/} }
TY - JOUR AU - Daniel Dombek AU - Zuzana Masáková AU - Tomáš Vávra TI - Confluent Parry numbers, their spectra, and integers in positive- and negative-base number systems JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 745 EP - 768 VL - 27 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.922/ DO - 10.5802/jtnb.922 LA - en ID - JTNB_2015__27_3_745_0 ER -
%0 Journal Article %A Daniel Dombek %A Zuzana Masáková %A Tomáš Vávra %T Confluent Parry numbers, their spectra, and integers in positive- and negative-base number systems %J Journal de théorie des nombres de Bordeaux %D 2015 %P 745-768 %V 27 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.922/ %R 10.5802/jtnb.922 %G en %F JTNB_2015__27_3_745_0
Daniel Dombek; Zuzana Masáková; Tomáš Vávra. Confluent Parry numbers, their spectra, and integers in positive- and negative-base number systems. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 3, pp. 745-768. doi : 10.5802/jtnb.922. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.922/
[1] S. Akiyama, « Cubic Pisot units with finite beta expansions », in Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, Berlin, 2000, p. 11-26. | MR | Zbl
[2] S. Akiyama & V. Komornik, « Discrete spectra and Pisot numbers », J. Number Theory 133 (2013), no. 2, p. 375-390. | MR | Zbl
[3] P. Ambrož, D. Dombek, Z. Masáková & E. Pelantová, « Numbers with integer expansion in the numeration system with negative base », Funct. Approx. Comment. Math. 47 (2012), no. part 2, p. 241-266. | MR | Zbl
[4] F. Bassino, « Beta-expansions for cubic Pisot numbers », in LATIN 2002: Theoretical informatics (Cancun), Lecture Notes in Comput. Sci., vol. 2286, Springer, Berlin, 2002, p. 141-152. | MR | Zbl
[5] J. Bernat, « Computation of
[6] Y. Bugeaud, « Sur la suite des nombres de la forme
[7] Č. Burdík, C. Frougny, J. P. Gazeau & R. Krejcar, « Beta-integers as natural counting systems for quasicrystals », J. Phys. A 31 (1998), no. 30, p. 6449-6472. | MR | Zbl
[8] K. Dajani, M. de Vries, V. Komornik & P. Loreti, « Optimal expansions in non-integer bases », Proc. Amer. Math. Soc. 140 (2012), no. 2, p. 437-447. | MR | Zbl
[9] D. Dombek, « Generating
[10] M. Edson, « Calculating the numbers of representations and the Garsia entropy in linear numeration systems », Monatsh. Math. 169 (2013), no. 2, p. 161-185. | MR | Zbl
[11] P. Erdös, I. Joó & V. Komornik, « Characterization of the unique expansions
[12] S. Fabre, « Substitutions et
[13] D.-J. Feng & Z.-Y. Wen, « A property of Pisot numbers », J. Number Theory 97 (2002), no. 2, p. 305-316. | MR | Zbl
[14] C. Frougny, « Confluent linear numeration systems », Theoret. Comput. Sci. 106 (1992), no. 2, p. 183-219. | MR | Zbl
[15] C. Frougny & B. Solomyak, « Finite beta-expansions », Ergodic Theory Dynam. Systems 12 (1992), no. 4, p. 713-723. | MR | Zbl
[16] D. Garth & K. G. Hare, « Comments on the spectra of Pisot numbers », J. Number Theory 121 (2006), no. 2, p. 187-203. | MR | Zbl
[17] S. Ito & T. Sadahiro, « Beta-expansions with negative bases », Integers 9 (2009), p. A22, 239-259. | MR | Zbl
[18] C. Kalle, « Isomorphisms between positive and negative
[19] M. Lothaire, Combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 17, Addison-Wesley Publishing Co., Reading, Mass., 1983, A collective work by Dominique Perrin, Jean Berstel, Christian Choffrut, Robert Cori, Dominique Foata, Jean Eric Pin, Guiseppe Pirillo, Christophe Reutenauer, Marcel-P. Schützenberger, Jacques Sakarovitch and Imre Simon, With a foreword by Roger Lyndon, Edited and with a preface by Perrin, xix+238 pages. | MR | Zbl
[20] Z. Masáková & E. Pelantová, « Purely periodic expansions in systems with negative base », Acta Math. Hungar. 139 (2013), no. 3, p. 208-227. | MR | Zbl
[21] Z. Masáková, E. Pelantová & T. Vávra, « Arithmetics in number systems with a negative base », Theoret. Comput. Sci. 412 (2011), no. 8-10, p. 835-845. | Zbl
[22] Z. Masáková & T. Vávra, « Integers in number systems with positive and negative quadratic Pisot base », RAIRO Theor. Inform. Appl. 48 (2014), no. 3, p. 341-367. | Numdam | MR
[23] W. Parry, « On the
[24] A. Rényi, « Representations for real numbers and their ergodic properties », Acta Math. Acad. Sci. Hungar 8 (1957), p. 477-493. | MR | Zbl
[25] W. Steiner, « On the structure of
[26] W. P. Thurston, « Groups, tilings, and finite state automata », in Summer 1989 AMS Colloquium Lecture, American Mathematical Society, Boulder.
[27] T. Vávra, « On the Finiteness property of negative cubic Pisot bases », , 2014. | arXiv
Cité par Sources :