Simultaneous Padé approximants to the Euler, exponential and logarithmic functions
Journal de Théorie des Nombres de Bordeaux, Tome 27 (2015) no. 2, pp. 565-589.

Nous présentons une méthode générale qui permet d’obtenir des approximations simultanées de type Padé pour les fonctions exponentielles et logarithmes.

We present a general method to obtain simultaneous explicit Padé type approximations to the exponential and logarithmic functions.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.914
Classification : 33C45,  41A21,  33C20,  11J72
Mots clés : Padé approximants, Orthogonal polynomials, Hypergeometric series
@article{JTNB_2015__27_2_565_0,
     author = {Tanguy Rivoal},
     title = {Simultaneous {Pad\'e} approximants to the {Euler,} exponential and logarithmic functions},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {565--589},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {27},
     number = {2},
     year = {2015},
     doi = {10.5802/jtnb.914},
     mrnumber = {3393167},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.914/}
}
Tanguy Rivoal. Simultaneous Padé approximants to the Euler, exponential and logarithmic functions. Journal de Théorie des Nombres de Bordeaux, Tome 27 (2015) no. 2, pp. 565-589. doi : 10.5802/jtnb.914. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.914/

[1] K. Alladi, M. L. Robinson, Legendre polynomials and irrationality, J. Reine Angew. Math. 318 (1980), 137–155. | MR 579389 | Zbl 0425.10039

[2] A. I. Aptekarev, A. Branquinho, W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355, 10 (2003), 3887–3914. | MR 1990569 | Zbl 1033.33002

[3] A. I. Aptekarev (ed.), Rational approximation of Euler’s constant and recurrence relations, Current Problems in Math., 9, Steklov Math. Inst. RAN, (2007). (Russian) | Zbl 1134.41001

[4] F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc. 11, 3 (1979), 268–272. | MR 554391 | Zbl 0421.10023

[5] F. Beukers, Legendre polynomials in irrationality proofs, Bull. Austral. Math. Soc. 22, 3 (1980), 431–438. | MR 601649 | Zbl 0436.10016

[6] E. Bombieri, J. Mueller, On effective measures of irrationality for a/b r and related numbers, J. Reine Angew. Math. 342 (1983), 173–196. | MR 703487 | Zbl 0516.10024

[7] T. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications 13, Gordon and Breach Science Publishers, 1978. | MR 481884 | Zbl 0389.33008

[8] G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions, J. Math. Pures Appl. (9) 58, 4 (1979), 445–476. | MR 566655 | Zbl 0434.10023

[9] G. V. Chudnovsky, Formules d’Hermite pour les approximants de Padé de logarithmes et de fonctions binomes, et mesures d’irrationalité, C. R. Acad. Sci. Paris Sér. A-B 288, 21 (1979), 965–967. | MR 540368 | Zbl 0418.41011

[10] G. V. Chudnovsky, Approximations de Padé explicites pour les solutions des équations différentielles linéaires fuchsiennes C. R. Acad. Sci. Paris Sér. A-B 290, 3 (1980), 135–137. | MR 563959 | Zbl 0424.41014

[11] S. Fischler, T. Rivoal, Approximants de Padé et séries hypergéométriques équilibrées, J. Math. Pures Appl. 82, 10 (2003), 1369–1394. | MR 2020926 | Zbl 1064.11053

[12] M. Hata, On the linear independence of the values of polylogarithmic functions, J. Math. Pures Appl. (9) 69, 2 (1990), 133–173. | MR 1067449 | Zbl 0712.11040

[13] M. Huttner, Constructible sets of linear differential equations and effective rational approximations of polylogarithmic functions, Israel J. Math. 153 (2006), 1–43. | MR 2254636 | Zbl 1143.34057

[14] A. Kuijlaars, K. McLaughlin, Asymptotic zero behavior of Laguerre polynomials with negative parameter, Constr. Approx. 20, 4 (2004), 497–523. | MR 2078083 | Zbl 1069.33008

[15] K. Mahler, Applications of some formulae by Hermite to the approximation of exponentials and logarithms, Math. Ann. 168 (1967), 200–227. | MR 205929 | Zbl 0144.29201

[16] T. Matala-Aho, Type II Hermite-Padé approximations of generalized hypergeometric series, Constr. Approx. 33, 3 (2011), 289–312. | MR 2784481 | Zbl 1236.41017

[17] Yu. V. Nesterenko, Hermite-Padé approximants of generalized hypergeometric functions (Russian) Mat. Sb. 185, 10 (1994), 39–72; translation in Russian Acad. Sci. Sb. Math. 83, 1 (1995), 189–219. | MR 1309182 | Zbl 0849.11052

[18] G. Rhin, C. Viola, On a permutation group related to ζ(2), Acta Arith. 77, 1 (1996), 23–56. | MR 1404975 | Zbl 0864.11037

[19] T. Rivoal, Rational approximations for values of derivatives of the gamma function, Trans. Amer. Math. Soc. 361, 11 (2009), 6115–6149. | MR 2529926 | Zbl 1236.11061

[20] T. Rivoal, On the arithmetic nature of the values of the Gamma function, Euler’s constant and Gompertz’s constant, Michigan Math. J. 61 (2012), 239–254. | MR 2944478 | Zbl 1288.11073

[21] E. B. Saff, R. Varga, On the zeros and poles of Padé approximants to e z , III, Numer. Math. 30 (1978), 241–266. | MR 492295 | Zbl 0438.41015

[22] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, 1966. | MR 201688 | Zbl 0135.28101

[23] V. N. Sorokin, Joint approximations of the square root, logarithm, and arcsine (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2009, 2, 65–69, translation in Moscow Univ. Math. Bull. 64, 2 (2009), 80–83. | MR 2543176 | Zbl 1304.11061

[24] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. reine angew. Math. 135 (1909), 284–305. | MR 1580770

[25] A. Thue, Berechnung aller Lösungen gewisser Gleichungen von der Form ax r -by r =f, Videnskabs-Selskabets Skrifter, I. math.-naturv. KL, 4, 9 S, Christiania 1918.

[26] W. Van Assche, Padé and Hermite-Padé approximation and orthogonality, Surv. Approx. Theory 2 (2006), 61–91. | MR 2247778 | Zbl 1102.41017

[27] C. Viola, On Siegel’s method in Diophantine approximation to transcendental numbers, Number theory, II (Rome, 1995). Rend. Sem. Mat. Univ. Politec. Torino 53, 4 (1995), 455–469. | MR 1452398 | Zbl 0873.11043