Generalized jacobians and Pellian polynomials
Journal de Théorie des Nombres de Bordeaux, Volume 27 (2015) no. 2, pp. 439-461.

Pell equations over the ring of integers are the forerunners of Thue equations. In fact, they too often have only finitely many solutions, when set over polynomial rings in characteristic zero. How often this happens has been the theme of recent work of D. Masser and U. Zannier. We pursue this study by considering Pell equations with non square-free discriminants over such rings.

Bien qu’elles aient une infinité de solutions, on peut voir les équations de Pell-Fermat comme des ancêtres des équations de Thue. L’analogie se resserre lorsqu’on les étudie sur les anneaux de polynômes en caractéristique nulle. Nous poursuivons l’étude entreprise par D. Masser et U. Zannier dans ce cadre, en considérant le cas de discriminants admettant une racine double.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.909
Classification: 14H25,  11G30,  14D10
Keywords: affine singular curves; generalized jacobians; Manin-Mumford conjecture; polynomial Pell equations
Daniel Bertrand 1

1 IMJ-PRG Université Pierre et Marie-Curie Paris, France
@article{JTNB_2015__27_2_439_0,
     author = {Daniel Bertrand},
     title = {Generalized jacobians and {Pellian} polynomials},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {439--461},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {27},
     number = {2},
     year = {2015},
     doi = {10.5802/jtnb.909},
     mrnumber = {3393162},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.909/}
}
TY  - JOUR
TI  - Generalized jacobians and Pellian polynomials
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2015
DA  - 2015///
SP  - 439
EP  - 461
VL  - 27
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.909/
UR  - https://www.ams.org/mathscinet-getitem?mr=3393162
UR  - https://doi.org/10.5802/jtnb.909
DO  - 10.5802/jtnb.909
LA  - en
ID  - JTNB_2015__27_2_439_0
ER  - 
%0 Journal Article
%T Generalized jacobians and Pellian polynomials
%J Journal de Théorie des Nombres de Bordeaux
%D 2015
%P 439-461
%V 27
%N 2
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.909
%R 10.5802/jtnb.909
%G en
%F JTNB_2015__27_2_439_0
Daniel Bertrand. Generalized jacobians and Pellian polynomials. Journal de Théorie des Nombres de Bordeaux, Volume 27 (2015) no. 2, pp. 439-461. doi : 10.5802/jtnb.909. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.909/

[1] L. Barbieri-Viale, V. Srinivas, Albanese and Picard 1-motives, Mémoire SMF 87 (2001). | Numdam | MR: 1891270 | Zbl: 1085.14011

[2] D. Bertrand, Special points and Poincaré bi-extensions (with an Appendix by B. Edixhoven), ArXiv 1104.5178v1 .

[3] D. Bertrand, B. Edixhoven, Pink’s conjecture, Poincaré biextensions and generalized Jacobians in preparation.

[4] D. Bertrand, D. Masser, A. Pillay, U. Zannier, Relative Manin-Mumford for semi-abelian surfaces, ArXiv 1307.1008v1.

[5] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Springer 1990. | Zbl: 0705.14001

[6] P. Deligne, Théorie de Hodge III, Publ. math. IHES, 44, (1974), 5–77. | EuDML: 103935 | Numdam | MR: 498552 | Zbl: 0237.14003

[7] P. Habegger, Torsion points on elliptic curves in Weierstrass form, Ann. Sc. Norm. Sup. Pisa 12, (2013), 687–715. | MR: 3137460 | Zbl: 1281.14026

[8] F. Hazama, Twists and generalized Zolotarev polynomials, Pacific J. Maths 203, (2002) 379–393. | MR: 1897905 | Zbl: 1054.11033

[9] B. Kahn, Sur le groupe des classes d’un schéma arithmétique (avec un appendice de M. Hindry), Bull. SMF 134, (2006), 395–415. | EuDML: 272459 | Numdam | MR: 2245999 | Zbl: 1222.14048

[10] J. McLaughlin, Polynomial solutions to Pell’s equation and fundamental units in real quadratic fields, J. London Math. Soc., 67, (2003), 16–28. | MR: 1942408 | Zbl: 1046.11014

[11] S. Lang, Fundamentals of diophantine geometry, Springer (1983). | MR: 715605 | Zbl: 0528.14013

[12] Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford GTM 6, (2006). | Zbl: 1103.14001

[13] D. Lorenzini, An Invitation to Arithmetic Geometry, GSM 9, AMS, (1996). | MR: 1376367 | Zbl: 0847.14013

[14] D. Masser, U. Zannier, Torsion points on families of products of elliptic curves Advances in Maths 259, (2014), 116–133. | MR: 3197654

[15] D. Masser, U. Zannier, Torsion points on families of simple abelian surfaces and Pell’s equation over polynomial rings (with an Appendix by V. Flynn), preprint, Jan. 2013.

[16] A. Schinzel, On some problems of the arithmetical theory of continued fractions II, Acta Arithm. 7, (1962), 287–298. | MR: 139566 | Zbl: 0112.28001

[17] J-P. Serre, Groupes algébriques et corps de classes, Hermann, (1959). | MR: 103191 | Zbl: 0718.14001

[18] U. Zannier, Some Problems of Unlikely Intersections in Arithmetic and Geometry, (with Appendixes by D. Masser), Ann. Maths St. 181, (2012), Princeton UP. | MR: 2918151 | Zbl: 1246.14003

[19] U. Zannier, Unlikely intersersections and Pell’s equations in polynomials, in Trends in Contemporary Mathematics, Springer INdAM series 8, (2014), 151–169.

Cited by Sources: