Bennett has proven: If , , and are positive integers with , then the equation has at most two solutions in positive integers and . Here we generalize this by allowing , , and to be positive rational numbers and, further, allowing and to be any integers, positive, negative, or zero. There are still at most two solutions except for two designated cases.
Bennett a démontré que si , et sont des nombres entiers positifs avec et , l’équation n’admet au plus que deux nombres entiers positifs et , comme solution. Nous pouvons généraliser ceci en choisissant , et dans l’ensemble des nombres rationnels positifs permettant à et d’être des nombres entiers, positifs, négatifs ou nuls. Il n’y a quand même, au plus, que deux solutions à l’exception de deux case où l’équation a exactement trois solutions.
Keywords: Pillai’s equation, Exponential Diophantine equations
@article{JTNB_2015__27_1_289_0, author = {Reese Scott and Robert Styer}, title = {Bennett{\textquoteright}s {Pillai} theorem with fractional bases and negative exponents allowed}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {289--307}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {1}, year = {2015}, doi = {10.5802/jtnb.902}, mrnumber = {3346973}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.902/} }
TY - JOUR AU - Reese Scott AU - Robert Styer TI - Bennett’s Pillai theorem with fractional bases and negative exponents allowed JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 289 EP - 307 VL - 27 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.902/ DO - 10.5802/jtnb.902 LA - en ID - JTNB_2015__27_1_289_0 ER -
%0 Journal Article %A Reese Scott %A Robert Styer %T Bennett’s Pillai theorem with fractional bases and negative exponents allowed %J Journal de théorie des nombres de Bordeaux %D 2015 %P 289-307 %V 27 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.902/ %R 10.5802/jtnb.902 %G en %F JTNB_2015__27_1_289_0
Reese Scott; Robert Styer. Bennett’s Pillai theorem with fractional bases and negative exponents allowed. Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 1, pp. 289-307. doi : 10.5802/jtnb.902. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.902/
[1] M. Bauer and M. Bennett, Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation, Ramanujan J., 6, (2002), 209–270. | MR | Zbl
[2] E. Bender and N. Herzberg, Some Diophantine equations related to the quadratic form ,in Studies in Algebra and Number Theory, G.-C. Rota, Ed., pp. 219–272, Advances in Mathematics Supplementary Studies, 6, Academic Press, San Diego, (1979). | MR | Zbl
[3] M. Bennett, On some exponential equations of S. S. Pillai, Canadian Journal of Mathematics, 53, 5 (2001), 897–922. | MR | Zbl
[4] M. A. Bennett, Y. Bugeaud and M. Mignotte, Perfect powers with few binary digits and related Diophantine problems. II, Mathematical Proceedings of the Cambridge Philosophical Society, 153, 3 (2012), 525–540. | MR | Zbl
[5] M. A. Bennett and C. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56, (2004), 23-54. | MR | Zbl
[6] Y. Bilu, G. Hanrot, P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, With an appendix by M. Mignotte, J. Reine Angew. Math., 539, (2001), 75–122. | MR | Zbl
[7] G. Birkhoff, H.S. Vandiver, On the integral divisors of , Annals of Math., 5, (1903-1904), 173-180.
[8] Y. Bugeaud, M. Mignotte, L’équation de Nagell-Ljunggren , Enseign. Math., 48, 2 (2002), 147–168. | MR | Zbl
[9] I. Connell, Elliptic Curve Handbook, dated February 1999, http://www.math.mcgill.ca/connell accessed 21 Nov 2012.
[10] R. K. Guy, Unsolved Problems in Number Theory, Third Edition, Springer, New York, (2004). | MR | Zbl
[11] F. Luca, The Diophantine equation , Acta Arith., 112, (2004), 87–101. | MR | Zbl
[12] M. Mignotte, A corollary to a theorem of Laurent-Mignotte-Nesterenko, Acta Arithmetica, 86, (1998), 101–111. | MR | Zbl
[13] Z. Scherr, The real topology of rational points on elliptic curves, http://www-personal.umich.edu/~zscherr/papers/rationalpoints.pdf accessed 21 Nov 2012.
[14] R. Scott, On the Equations and , Journal of Number Theory, 44, 2 (1993), 153–165. | MR | Zbl
[15] T. Skolem,Diophantische Gleichungen, Chelsea Publishing Company, New York, NY (1950).
[16] R. Styer webpage http://www.homepage.villanova.edu/robert.styer/ReeseScott/index.htm
[17] L. Szalay, The equation , Indag. Math., N.S., 13, 1, (2002), 131–142. | MR | Zbl
[18] M. Waldschmidt, Perfect powers: Pillai’s works and their developments, preprint arXiv:0908.4031, 27 Aug 2009.
Cited by Sources: