Realising the cup product of local Tate duality
Journal de Théorie des Nombres de Bordeaux, Volume 27 (2015) no. 1, pp. 219-244.

We present an explicit description, in terms of central simple algebras, of a cup product map which occurs in the statement of local Tate duality for Galois modules of prime cardinality p. Given cocycles f and g, we construct a central simple algebra of dimension p 2 whose class in the Brauer group gives the cup product fg. This algebra is as small as possible.

Nous présentons une description explicite, en termes d’algèbres centrales simples, d’un cup-produit intervenant dans l’énoncé de la dualité de Tate locale pour les modules galoisiens d’ordre premier p. Étant donnés deux cocycles f et g, nous construisons une algèbre centrale simple de dimension p 2 dont la classe dans le groupe de Brauer donne le cup-produit fg. Cette algèbre est aussi petite que possible.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.900
Classification: 16K20,  12G05
@article{JTNB_2015__27_1_219_0,
     author = {Rachel Newton},
     title = {Realising the cup product of  local {Tate} duality},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {219--244},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {27},
     number = {1},
     year = {2015},
     doi = {10.5802/jtnb.900},
     mrnumber = {3346971},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.900/}
}
TY  - JOUR
TI  - Realising the cup product of  local Tate duality
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2015
DA  - 2015///
SP  - 219
EP  - 244
VL  - 27
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.900/
UR  - https://www.ams.org/mathscinet-getitem?mr=3346971
UR  - https://doi.org/10.5802/jtnb.900
DO  - 10.5802/jtnb.900
LA  - en
ID  - JTNB_2015__27_1_219_0
ER  - 
%0 Journal Article
%T Realising the cup product of  local Tate duality
%J Journal de Théorie des Nombres de Bordeaux
%D 2015
%P 219-244
%V 27
%N 1
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.900
%R 10.5802/jtnb.900
%G en
%F JTNB_2015__27_1_219_0
Rachel Newton. Realising the cup product of  local Tate duality. Journal de Théorie des Nombres de Bordeaux, Volume 27 (2015) no. 1, pp. 219-244. doi : 10.5802/jtnb.900. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.900/

[1] P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge University Press, (2006). | MR: 2266528 | Zbl: 1137.12001

[2] N. Jacobson, Basic Algebra II, W. H. Freeman and Co., San Francisco, Calif., USA, (1980). | MR: 571884 | Zbl: 0694.16001

[3] V. A. Kolyvagin, Finiteness of E() and Ш(E,) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52, 3 (1988), 522–540. | MR: 954295 | Zbl: 0662.14017

[4] V. A. Kolyvagin, On the Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves, Izv. Akad. Nauk SSSR Ser. Mat. 52, 6 (1988), 1154–1180. | MR: 984214 | Zbl: 0681.14016

[5] A. Pillons, Exposé 7. – Cup-produit in Cohomologie Galoisienne des Modules Finis, Ed. G. Poitou, Travaux et Recherches Mathématiques, Dunod Paris, (1967). | MR: 219591 | Zbl: 0161.04203

[6] I. Reiner, Maximal Orders, London Mathematical Society Monographs New Series, Clarendon Press, Oxford, UK, (2003). | MR: 1972204 | Zbl: 1024.16008

[7] J.-P. Serre, Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag New York, Inc., New York, (1979). | MR: 554237 | Zbl: 0423.12016

[8] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Int. Congress Math. Stockholm (1962), 288–295. | MR: 175892 | Zbl: 0126.07002

Cited by Sources: