We present an explicit description, in terms of central simple algebras, of a cup product map which occurs in the statement of local Tate duality for Galois modules of prime cardinality . Given cocycles and , we construct a central simple algebra of dimension whose class in the Brauer group gives the cup product . This algebra is as small as possible.
Nous présentons une description explicite, en termes d’algèbres centrales simples, d’un cup-produit intervenant dans l’énoncé de la dualité de Tate locale pour les modules galoisiens d’ordre premier . Étant donnés deux cocycles et , nous construisons une algèbre centrale simple de dimension dont la classe dans le groupe de Brauer donne le cup-produit . Cette algèbre est aussi petite que possible.
@article{JTNB_2015__27_1_219_0, author = {Rachel Newton}, title = {Realising the cup product of local {Tate} duality}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {219--244}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {1}, year = {2015}, doi = {10.5802/jtnb.900}, mrnumber = {3346971}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.900/} }
TY - JOUR AU - Rachel Newton TI - Realising the cup product of local Tate duality JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 219 EP - 244 VL - 27 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.900/ DO - 10.5802/jtnb.900 LA - en ID - JTNB_2015__27_1_219_0 ER -
%0 Journal Article %A Rachel Newton %T Realising the cup product of local Tate duality %J Journal de théorie des nombres de Bordeaux %D 2015 %P 219-244 %V 27 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.900/ %R 10.5802/jtnb.900 %G en %F JTNB_2015__27_1_219_0
Rachel Newton. Realising the cup product of local Tate duality. Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 1, pp. 219-244. doi : 10.5802/jtnb.900. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.900/
[1] P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge University Press, (2006). | MR | Zbl
[2] N. Jacobson, Basic Algebra II, W. H. Freeman and Co., San Francisco, Calif., USA, (1980). | MR | Zbl
[3] V. A. Kolyvagin, Finiteness of and for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52, 3 (1988), 522–540. | MR | Zbl
[4] V. A. Kolyvagin, On the Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves, Izv. Akad. Nauk SSSR Ser. Mat. 52, 6 (1988), 1154–1180. | MR | Zbl
[5] A. Pillons, Exposé 7. – Cup-produit in Cohomologie Galoisienne des Modules Finis, Ed. G. Poitou, Travaux et Recherches Mathématiques, Dunod Paris, (1967). | MR | Zbl
[6] I. Reiner, Maximal Orders, London Mathematical Society Monographs New Series, Clarendon Press, Oxford, UK, (2003). | MR | Zbl
[7] J.-P. Serre, Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag New York, Inc., New York, (1979). | MR | Zbl
[8] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Int. Congress Math. Stockholm (1962), 288–295. | MR | Zbl
Cited by Sources: