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Realising the cup product of
local Tate duality

par RACHEL NEWTON

RESUME. Nous présentons une description explicite, en termes
d’algebres centrales simples, d’un cup-produit intervenant dans
I’énoncé de la dualité de Tate locale pour les modules galoisiens
d’ordre premier p. Etant donnés deux cocycles f et g, nous construi-
sons une algebre centrale simple de dimension p? dont la classe
dans le groupe de Brauer donne le cup-produit f U g. Cette al-
gebre est aussi petite que possible.

ABSTRACT. We present an explicit description, in terms of cen-
tral simple algebras, of a cup product map which occurs in the
statement of local Tate duality for Galois modules of prime car-
dinality p. Given cocycles f and g, we construct a central simple
algebra of dimension p? whose class in the Brauer group gives the
cup product f U g. This algebra is as small as possible.

1. Introduction

Let F' be a non-Archimedean local field with separable closure Fy., and
absolute Galois group Gr = Gal(Fgp/F). Let A be a finite Gr-module
such that the cardinality of A is not divisible by the characteristic of F'.
Denote by p the group of all roots of unity in Fgep. Let AV = Hom(A, p).
Tate proved the following result in [8].

Theorem 1.1 (Local Tate duality). Fori > 3, the group H'(Gr, A) = 0.
For 0 <i <2, the group H'(Gg, A) is finite and the cup product

(1.1)  U: HY(Gp,A) x H*Y(Gp, AY) = H*(Gp,p) = Br(F) = Q/Z
gives a duality between H'(Gr, A) and H*H (G, AV).

Local Tate duality is a valuable tool for computing the Galois cohomology
of local fields. It plays a crucial role in Kolyvagin’s work in [3] and [4], where
he applies Euler systems to elliptic curves and thereby provides evidence
for Birch and Swinnerton-Dyer Conjecture.

In the cases i = 0 and i = 2, the cup product (1.1) is easily computed,
using Lemma 1 of the appendix ‘Computations of Cup Products’ in [7], for
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example. In this paper, we focus on the case ¢ = 1 for modules of prime
cardinality.

Notation and conventions. Let K be any field. We will consider K to
be fixed throughout the paper and will use the following notation.

Kgep a fixed separable closure of K

Gk  the absolute Galois group of K, G = Gal(Kgep/K)

M a Gx-module of prime cardinality p such that char(K) tp
p the group of pth roots of unity in Kep

MY the Tate dual of M, M = Hom(M, p1,)

H,, the kernel of the natural map G, — Aut(M)

H,v the kernel of the natural map G, — Aut(M").

For elements f, g, @, ... of cohomology groups, we often employ the no-
tation fy, go, o, - - - to refer to a choice of representative cocycles.

Our aim is to give an explicit description of the following cup product.
(1.2)  U: HY Gy, M) x H (G, M") — H*(Gx, pp) = Br(K)[p).

The main result is Theorem 1.9 where, given non-trivial cocycle classes
feHY Gk, M) and g € H' (G, M"), we construct a central simple alge-
bra D with the following properties.

(1) The class of D in Br(K) is the class of the cup product f U g.
(2) dimg (D) = p?. Therefore, D is a division algebra if and only if
fUg#0.
The usual construction gives a central simple algebra which can have di-
mension as large as p*(p—1)* in general. Our minimisation of the dimension
of the central simple algebra makes the cup product (1.2) more amenable
to explicit computation.
From now on, we fix two non-trivial cocycle classes: f € H' (G, M) and

g € HY(Gx,M"). In order to compute the cup product f U g as a central
simple algebra, we must replace G with a finite Galois group. The action
of Gk on M gives a map Gx — Aut(M). Let H,, denote the kernel of this
map and consider the inflation-restriction exact sequence

Inf Res

OHHI(GK/HM,M) HI(GK’M) Hl(HM,M)GK/HM

HH2(GK/H]M7M).

Observe that G /H,, injects into Aut(M), which has order p — 1. Hence,
G /H,; has order coprime to #M = p and consequently

H1<GK/H]\/[,M) = H2(GK/HJM,M) :0
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Therefore, the restriction map gives an isomorphism
HY (G, M) = H'(H,,, M)®x/H — Homg, (Hy, M).

The restriction of f to H,, is a homomorphism from H,, to M. Let Ny de-
note the kernel of the restriction of f to H,,. Then N is a normal subgroup
of Gx. Because f # 0, the injective G x-homomorphism H,;/Ny — M in-
duced by f is also surjective. So H,,/Ny has order p. In the same way,
we define H,,v and N4. Let N = Ny N N,. The lattice of subgroups is as

follows.
Gk
HJ\/I

Hyv

Nf\N/Ng

Lemma 1.2. If Ny = Ny, then M and MY are isomorphic as G x-modules.

Proof. We have isomorphisms of G -modules H,,/N; — M, induced by f,
and H,v /Ny — MY, induced by g. So it suffices to show that

Hy /Ny = Hyv /N,

Observe that G /Ny = Hy /Ny x Gx/H,, and therefore H,, /Ny is the
unique Sylow p-subgroup of G /Ny. But H,v /Ny is also an order p sub-
group of G /Ny = G /Ny. O

Corollary 1.3. If Ny = Ny and p > 2, then fUg = 0.

Proof. By Lemma 1.2, M and M" are isomorphic as G x-modules. By fixing
such an isomorphism, we identify M with M. The cup product map is
anti-symmetric and p > 2 so anti-symmetric implies alternating. Thus, it
is enough to show that g = nf for some n € Z. The restriction map

Res: HY (G, M) — H'(H,,, M) = Hom(H,;, M)

is injective, so it suffices to show that Res(g) = nRes(f) for some n € Z.
Now Res(f) and Res(g) both have kernel Ny, so they both arise from iso-
morphisms H,,/N; — M. But M has order p, so any two such isomor-
phisms differ by a scalar multiple. O

Lemma 1.4. If Ny C Ny or Ny C Ny, then Ny = Ny.
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Proof. Suppose that Ny C N,. We will show that Ny = Ny. The other
argument is identical. Let 7 : G /Ny — G /N4 be the natural projection.
Recall that G /Ny = H,/Nf x G /H,, where H, /N has order p and
Gk /H) has order coprime to p. Similarly, Gx /Ny = Hyv /Ny X G /Hyv.
Since H,v /N, has order p and 7 is surjective, the order of 7~!(H,v /Ny)
is divisible by p. Therefore, 7~ (H,v /N,) contains the unique Sylow p-
subgroup of Gy/Ny, namely H, /N;. Suppose for contradiction that
m(Hy /Ny) = 0. This implies that Im(w) = 7(Gx/H,). But this con-
tradicts the surjectivity of m because the order of Gx/H,, is coprime to
p, whereas p divides the order of G /N,. Therefore, 7 defines an isomor-
phism of Gg-modules 7 : Hy /Ny — H,v/Ng. Moreover, f and g define
Gr-module isomorphisms f : Hy, /Ny — M and g : Hyv /Ny — MY re-
spectively. Hence, M and MV are isomorphic as G g-modules. But then
H,, = H,v by definition. This, combined with the fact that the natu-
ral projection gives an isomorphism 7 : Hy, /Ny — H,v /Ny, is enough to
complete the proof that Ny = N,. O

Recall that N = Ny N N,. Consider the inflation-restriction exact se-
quence

0 —> HY (G /N, M) —25% HY(G o, M) 25> HY(N, M).

By definition of N, the element f is in the kernel of restriction to N.
So f comes from an element of H'(Gy /N, M), which we will also call f.
Similarly, g comes from an element of H'(G /N, M"), which we will also
call g. The properties of the cup product mean that the following diagram
commutes.

HY(Gy, M) x HY(G, M) S H2(G, pip)

InfT InfT InfT

HYGy/N,M) x H (G /N,M") —— H*(Gx /N, 11)

Therefore, we can reduce to studying the cup product
(1.3) U: HY(Gx /N, M) x H'(Gx/N,M") — H*(Gx/N, ).

Let L = KXY so that Gal(L/K) = Gy /N. Thus, L/K is a finite Galois

sep
extension of degree dividing p?(p — 1)2. Note that the action of G on

MY = Hom(M, u,) is given by (s - ¢)(m) = s- ¢(s~1-m) for all ¢ € MV,
all s € G'x and all m € M. Hence, p,, is fixed by all elements in H,, N H,,v,
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so pp C L*. We have the following commutative diagram:
HQ(GKaMp)% H2(GK7K* )

sep
InfT

H*(Gal(L/K), pp) —> H2(Gal(L/K), L*) —> Br(L/K)

Br(K)

where Br(L/K) denotes the subgroup of Br(K) consisting of the classes of
central simple algebras over K which are split by L/K. The isomorphism
H?(Gal(L/K),L*) — Br(L/K) is induced by the map sending a 2-cocycle
9 to the central simple algebra Ay as defined below.
Definition 1.5. Let L/K be a finite Galois extension and let ¥ be a
2-cocycle representing an element of H2(Gal(L/K),L*). The K-algebra
Ay is defined to be the left L-vector space with basis {es}cqai(r/x) and
multiplication given by

est =s(x)es VseGal(L/K), VYzel

eser = U(s,t)est Vs,t € Gal(L/K).
Ay is a central simple algebra of dimension [L : K]? over K. See, for exam-
ple, [6], where this is Theorem 29.12.

From now on, fix representative cocycles fy, go for f and g respectively.

Definition 1.6. Let ¢ = f U g. The formula given in the remark at the
end of §2.4 of [5] tells us that a representative 2-cocycle for ¢ is
@o : Gal(L/K) x Gal(L/K) —
given by
(1.4) po(s, t) = (s go(t))(fo(s))-
Lemma 1.7. If Ny = Ny and p = 2, then fUg corresponds to a quaternion
algebra over K, generated by two elements x and y such that K(x) = Ksjgf;,
2?2 € K*, y?> = —1 and yx = —xy. Consequently, f U g = 0 if and only if
N

_]. c NKgg/K(Ksef;).
Proof. This follows from the explicit construction of a central simple algebra
given above. By [2], Theorem 8.14, the quaternion algebra Ay, is a division
ring if and only if y? ¢ Nk (2)/ k(K (z)). O

Having dealt with the case Ny = N, for all p, henceforth we assume that
Ny # Ny.

Definition 1.8. Define ker(fy) = {s € Gk | fo(s) = 0}. Since fy is a
1-cocycle, ker(fy) is a subgroup of G. Likewise, we define the subgroup
ker(go) of Gk by ker(go) = {s € Gk | go(s) = 0}.
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The Galois correspondence gives the following diagram of subfields.

L=KN

sep

Kaoh / \ Kaeh
N ~

ker(fo) ker(qo)
scp

Below, we state the main result Which will be proved in this paper.

Theorem 1.9. Write ngeg(fo) = K(a) with Trg o)k (a) = 0. Similarly,

write Kseer(go) = K(B) with Trggy/x(B) = 0. Let 0 € G be such that o
acts trivially on the normal closure of K(f3, jip) and o(a) # o Likewise, let
p € G act trivially on the normal closure of K(a p) but non-trivially on

B. Let ¢ = (90(p))(fo(0)) € pp. Let hij = S0— (Fa’(al). Write p?(B) =
p_ o mij 3¢ for mij € Kﬁgv. Let D be the left K(ﬂ)—vector space with basis

{zJ }ogjgpfl, where z satisfies the same minimal polynomial over K as «,
with multiplication

p—1
B= ;B
i,j=0
where the matriz (cij)ij; = (hljmij)i,j(hm) . Then D is a central simple
algebra of dimension p? over K which gwes the class of fUg in Br(K).

Corollary 1.10. Suppose that p = 2. Then f U g is represented by a

quaternion algebra over K, generated by two elements x and y such that
ki

K(x) = ngg(go) and K(y) = Kéf;(f‘)), with 22,y% € K* and yr = —uzy.
Consequently, fUg is trivial if and only if 2% € Ni(y)/x (K(y)), if and only
if y* € Ni(a) i (K()).

Proof. This follows immediately from Theorem 1.9. The quaternion alge-
bra is a division ring if and only if z? ¢ N K(y)/k (K(y)), if and only if
y* ¢ Ni(z)/x (K (x)) by [2], Theorem 8.14. O

The algebra A, constructed as in Definition 1.5, is a representative
in Br(K) of fU g. The dimension of A,, over K can be as large as
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p*(p — 1)*. In Section 2, we find a minimal left ideal S of A,,. The Artin-
Wedderburn Theorem shows that End, (S)°PP represents the same class
in Br(K) as Agp,. Moreover, the dimension of End4, (8)°PP over K is just

p?. In Section 3, we show that Ké(fg(f ) and Ké(f;(go) are maximal commu-
tative subalgebras of Enda, (S)°PP, and that Enda, (S)°PP is generated

by Kker(go) together with any element d € Endga, (S)°PP \ Ké{ee;(go). In

Section 4, we find such an element d € Endga, (S)°P \ nge;(go) and in
Section 5 we calculate its minimal polynomial over K and deduce that
K(d) = Ké{f;(f %) Tn Section 6, we describe the multiplicative structure of
the algebra End 4, (S5)°PP in terms of structure constants. In Section 7, we
apply Theorem 1.9 to a specific example.

2. Applying the Artin-Wedderburn theorem

Recall the construction given in Definition 1.5 of the algebra A,, from
the 2-cocycle ¢g representing f U g. The dimension of Ay, over K is equal
o [L : K]J? and is therefore at most p*(p — 1)%. The Artin-Wedderburn
Theorem tells us that A,y = My,(D) for some n € N and some division
algebra D. It is the division algebra D which gives the class of A, in
Br(K). We will show that if D # K then the dimension of D over K is p?
and we will describe D in terms of an endomorphism ring.

Definition 2.1. Let A be a central simple algebra over a field K. Write
A = M, (D) for n € N and a division algebra D.

(1) The period of A is the order of the class of A in Br(K).

(2) The quantity /dimg (D) is called the index of A. The index of A
is known to be equal to the greatest common divisor of the degrees
of finite separable field extensions which split A. See Proposition
4.5.8 of [1], for example.

Lemma 2.2. Kkor fo)/K and KkCr 90) /K are degree p subextensions of L
which split Ay, .

Proof. Recall that ker(fy) is a subgroup of Gy because fy is a 1-cocycle.
Also, fp defines an injection from the left cosets of ker(fy) in G to M. This
injection is also a surjection because the restriction of f to H,, surjects onto

M. Thus, Ké(:; fo)/K is a degree p extension. Since N C Ny C ker(fp), we

have Ksl,fg(f )« L. The following diagram commutes.

(2.1) H?(Gal(L/K), L") Br(L/K)

e |

H2(Gal(L/ K500, %) —> Br(L/ KX )
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where the map Br(L/K) — B]r(L/Ké{ff)r fo)) is induced by
Ay Ao KiTUo),

Recall that Gal(L/Ké{:;(fo ) = ker(fo)/N. The restriction of f to ker(fy)/N
is trivial in H'(ker(fo)/N, M), and the cup product commutes with the
restriction homomorphism. So we have

Res(f U g) = Res(f) URes(g) = 0U Res(g) = 0.

Therefore, diagram (2.1) shows that A, ®x Ksep(f 0) represents the trivial

class in Br(L/K, keer )) In other words, Ksep(f 0) splits Ag,. The argument
for Ks.fp(go) is analogous. O

Remark 2.3. If fj is modified by a coboundary, the subgroup ker(foy) is
)

conjugated by an element of GG,. Thus, the embedding of Ksee 0 0 s

changed. But the K-isomorphism class of the field Ké(fg(f 0) only depends

on f. Therefore, the fact that ngeg(f o) splits A, only depends on f and
not on the choice of cocycle representative fj.

Corollary 2.4. Suppose that the class of Ay, in Br(K) is non-trivial. Then
Ay, is isomorphic to My (D), where D is a central division algebra over K
of dimension p*> and n = p~'[L : K|. Thus, the index of Ay, is equal to
its period, p. Moreover, Ki(f;(ﬁ)) and Kég(g(’) embed into D as maximal
commutative subalgebras.

Proof. Recall that the index of A, is the greatest common divisor of the
degrees of finite separable extensions which split A,,. Lemma 2.2 states
that Ké(f;(f 0) /K is a degree p extension which splits A, . Since p is prime,
the index of Ay, is p. Consequently, A,, = My(D), where D is a central
division algebra of dimension p? over K, and D has a maximal commutative
subalgebra isomorphic to Ké‘é’;(f o) . Likewise, Ké{g(go) also embeds into D as

a maximal commutative subalgebra. Moreover,
[L: K? = dimg(Ay,) = dimg (M, (D)) = n*[D : K] = n*p?.
Therefore, n = p~![L : K]. O

We know that A, is isomorphic to M, (D) for a division algebra D. We
want to compute D explicitly and relate its generators to the splitting fields
Ké‘fg(f %) and Ké{f;(go). The proof of the Artin-Wedderburn Theorem shows
that D = Endg, (5)°PP for any minimal left ideal S. The same proof also
shows that a left ideal I of A, is minimal if and only if

dimg (I) =n[D : K].
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Definition 2.5. Let 0 =
Ay, generated by 0.

teCal(L/ K 90)) € and let S be the left ideal of

Proposition 2.6. Let R be a set of left coset representatives for the sub-
group Gal(L/K;f;(go)) in Gal(L/K). Then the elements {es0}ser form a
basis for S as a left L-vector space. Consequently, the dimension of S as a
K -vector space satisfies the following equality.

dimg (8) = [KE90) : KL : K] = p[L : K].

Proof. The elements {es0} cqai(r/K) SPan the left L-vector space S = Ay, 0.
For any s € Gal(L/K),

esf = > eser = > wo(s, t)est = > est

teGal(L/K;‘ee;(g())) tEGal(L/K:;;(gO)) tEGal(L/K:;;(QO))

where the last equality holds because ¢g(s,t) = 1 for all t € Gal(L/ Kéif;(gf))),
by definition of ¢g. In particular, if s € Gal(L/Ké(eeg(go)), then es6 = 6. So,
since R is a set of left coset representatives for Gal(L/ Ké(:;(go)) in Gal(L/K),

the elements {es0}scr span the left L-vector space S. In fact, these elements
form a left L-basis for S. To show linear independence, suppose that

Z rses0 =0

sER
for some coeflicients xs € L. Then

0= Z rsesh = Z T Z est = Z Ty€pr

sER sER teGal(L/K;f;(gO)) reGal(L/K)

where the coefficients xz, for r € Gal(L/K) are given by , = x5 where s € R
is the coset representative for the left coset of Gal(L/Ké{:g(gO)) in Gal(L/K)
containing 7. But the elements {e;},ccai(z/K) form a left L-basis for A, .
Therefore, s = 0 for all s € R. Hence, the elements {es0}scr form a left

L-basis for S, with #R distinct elements. The cardinality of R satisfies
Gal(L/K
4R = # Gal( /k ()) :[nge;(go):K]:p7
# Gal(L/Ksep ™)

whereby the dimension of S as a K-vector space is p[L : K], as required. [

Corollary 2.7. If the class of Ay, in Br(K) is non-trivial, then S is a
minimal left ideal of Ay, .

Proof. The proof of the Artin-Wedderburn Theorem shows that a left ideal
in Ay, is minimal if and only if its dimension over K is equal to n[D : K],
where Ay, = M, (D). By Corollary 2.4, [D : K| = p? and therefore

[L: K? = dimg(Ay,) = dimg (M, (D)) = n*[D : K] = n’p?.
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Thus, a left ideal in A, is minimal if and only if its dimension over K is
equal to np? = p[L : K]. O

Corollary 2.8. If D # K, then D = Endy,, (S).

Proof. By definition, the class of Ay, in Br(K) is trivial if and only if
D = K. The proof of the Artin-Wedderburn Theorem shows that

D = Endg,, (I)°"

for any minimal left ideal I of A,. Therefore, the result follows from Corol-
lary 2.7. O

Remark 2.9. If the class of Ay, in Br(K) is trivial, then S is no longer a
minimal left ideal of Ay,. But Enda, (S)°PP is still a central simple algebra

over K of dimension p? with the same class in Br(K) as A,,. We will prove
that Enda, (S)°PP is the algebra D described in Theorem 1.9.

3. Computing the endomorphism ring

We have seen that End 4, (8)°PP gives the class of Ay, in Br(K'). We want
to give an explicit description of Endga, (S)°PP in terms of generators and
relations. The first step will be to find a maximal commutative subalgebra
of dimension p inside Enda, (S)°PP.

Recall that S = A0, where ¢ = et. Let R be a set of

ker
ZteG I(L/ KA (90))

left coset representatives for Gal(L/ Ki{ee;( )) in Gal(L/K) and let

B ={zes |z € L,s € R}.
Proposition 2.6 tells us that S = Bf. We would like B to be a subalgebra
of A,,, so we want to choose R so that it is a subgroup of Gal(L/K).

Lemma 3.1. Let p € Hyv/N be such that the image of p in Hy~ /Ny gen-
erates Hyv /[Ny. Then R = {p'}o<i<p—1 is a set of left coset representatives

for Gal(L/ K9y in Gal(L/K).

Proof. Recall that Gal(L/K) = Gx/N and Gal(L/Ké{:g(go ) = ker(go)/N.
We have #R = [K£29) . K. By Lemma 2.2, [Ke9) . K] = p. Thus, it
is enough to show that p" € ker(go)/N if and only if p divides r. We have
Ny/N = (H,v/N) N (ker(go)/N).

By construction,p € H,,v/N. Hence,p" €ker(go)/N if and only ifp” € Ny/N.
But the image of p generates H,,v /N, and [H),v : Ng| = p, so p" € Ny/N
if and only if p divides 7. O

From now on, we fix R = {p'}o<i<p—1, so B is a subalgebra of A,,. We
want to compute Endy,, (S§)°PP. We know that S is a principal left ideal
generated by 6, so any x € Endg, (S) is completely determined by x(6).
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Since x(0) € S = Bf, we have x(6) = bf for some b € B. The question is,
which b can occur? In other words, for which b € B does x : 8 — bf extend
to a well-defined element of Enda, (S)? The extension of x to the whole
of § is given by

x(cd) =cx(0) VceB.
This is well defined because it follows from Proposition 2.6 that any el-
ement of § can be written as cf for a unique ¢ € B. But it may not

be an A, -endomorphism. We see that x gives a well-defined element of
Enda, (S) if and only if

x(af) = ax(0) = abl VacAg.

The point is that, when we allow multiplication by the whole of A,
(rather than just the subalgebra B), it is possible to have a10 = a6 with
ai,as € Ay and a; # az. For x to give a well-defined element of End Agg (S),
we would also need a1b0 = asbf in this case. Equivalently, x extends to a
well-defined element of Endy,, (S) if and only if

abf = 0 for all a € A, such that af = 0.

Clearly, it suffices for b to commute with 8 = 3 e¢. Hence,

ker
teGal(L/KEx(90))

it suffices for b to commute with e; for every ¢t € Gal(L/Ké{:g(go)). The

multiplication on Endy, (S) is the opposite of the multiplication on B
inherited from Ag,. Therefore, we can view Ends, (S)°PP as a subalgebra
of B. We will make this identification from now on. Thus, we have

(3.1) BDEnda, (S)*D{be B |eb=be; Vte Gal(L/KEr @)},

Remark 3.2. In fact, a careful analysis of the left annihilator of # may be
used to show that the rightmost inclusion is an equality. We omit the details
of this rather involved calculation and instead demonstrate the equality
simply by finding enough elements in the right-hand side and comparing
dimensions.

The rightmost inclusion in (3.1) leads us to ask the following question.

Which elements of B commute with e; for every t € Gal(L/ Ké{;;(go))?

Lemma 3.3. The field Ké‘sg(g()) is a subalgebra of B and every element of
Ké‘:;(go) commutes with e; for everyt € Gal(L/Ki{fg(gO)). Therefore, Ké(f;(go)
is a mazimal commutative subalgebra of End, (S)PP.
Proof. Recall that

B={xe, |reL, 0<i<p-—1},
where p € H)v /N is such that its image generates H,,v/Ny. Recall the

definition of the multiplication in A,;,. We have
esv = s(x)es Vse Gal(L/K), VzelL.
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Thus, z € L commutes with e if and only if s(x) = z. By (3.1), we conclude

that Ké(f;(go) C Endy, (S)°PP C B. Now Endy, (S)°PP is a central simple

algebra of dimension p? over K and [K;‘jg(g‘” : K| = p. Therefore, Kég(go)

is a maximal commutative subalgebra of End 4, (S)°PP. O

Lemma 3.4. Enda, (S)°PP is generated as a K-algebra by the elements of

Ké*::;(go) together with any element d € Enda,, (S)P \ nge;(go)‘

Proof. We know that the algebra End, (S)°PP has dimension p? over K.
Let d € Enda, (S)°PP\Kiep®) and let T be the subalgebra of End 4, (S)°PP
generated over K by Ké{eeg(go) and d. Then,

K C KX@0) ¢ T C Endg,, (S)°PP.

First, suppose that End 4, (S)°PP is a division ring. Then 7' is also a division
ring and we can view End s, (S)°PP as a left T-vector space. We have

p* = dimg End g, (S)°PP = (dimy End g, (S)°PP)(dimg T).

But dimg T > [Kﬁee;(%) : K] = p, whereby dimg T = p? and therefore
Enda, (S)°PP =T.

Now suppose that End 4, (S)°PP is not a division ring. Since it is a central
simple algebra of dimension p? over K, the Artin-Wedderburn Theorem
tells us that Enda, (§)°PP = M,(K). In other words, Endy, (8)°PP is
isomorphic to Endg (V'), where V' is a K-vector space of dimension p. Note
that V is a faithful T-module. Moreover,

dimg V

A (o) V = — MKV g
Ksep % [K;(:;(QO) . K]

Therefore, V is a simple Kéf;(go)—module, and hence a simple T-module.

So T has a non-zero faithful simple module, whereby the Jacobson radical
of T is zero. Therefore, T is a semisimple K-algebra, since T is finite-
dimensional over K. Now the Artin-Wedderburn Theorem tells us that
T = M,,(E) for some division ring E over K and some m € N. Furthermore,
any nonzero simple module for M,,(F) is isomorphic to the left ideal I
of M,,(F) consisting of matrices with all entries zero except in the first
column. In particular,

p=dimg V =dimg I = m[E : K].

If m=1and [E: K| =pthen T = E and we get a contradiction because

Kéfg(go) is a proper subalgebra of T" of dimension p over K. Therefore, we

must have m = p and £ = K, whereby 7' = M,(K). So T' = End 4, (S)°"P,
as required. O
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Proposition 3.5. Enda, (S)°P? contains a mazimal commutative subal-
gebra isomorphic to Kéfg(fo).

Proof. Let T = Ay, J where J = ZteGal(L/Ké‘:;(fO))

to that of Proposition 2.6 shows that dimg (7) = p[L : K] = dimg(S). The
algebra A, is a central simple algebra, so any two A,,-modules with the
same finite dimension are isomorphic. Hence, T is isomorphic to S as an
Agy-module. Write 7 = {ze,iJ |z € L, 0 <i < p—1}, where o € H,,;/N is
such that its image generates H,,/Ns. Replacing S by 7 and imitating the

proof of Lemma 3.3, we find K;{:g(f 0) as a maximal commutative subalgebra

of Enda, (7)°PP. Moreover, Enda, (7)°P = Enda, (S)°PP. 0

e;. A similar argument

Remark 3.6. In Lemma 3.3, we found Ké‘:;(”) as a maximal commutative
subalgebra of Endy, (8)°PP. Proposition 3.5 tells us that Endg,, (S)°PP

contains a maximal commutative subalgebra isomorphic to Kég(f 0). If these
two subalgebras are distinct, then together they generate Endg, (S§)°PP. In

this case, in Lemma 3.4 we could choose d € Enda, (S)°PP\ Ké‘fg(”) such
that K (d) = Kéfg(fo). In fact, in the next two sections we show that we can
always choose d € End,, (S)°PP\ Kég(go) such that K(d) = Kéf;(fo).

4. Finding generators

Lemma 3.4 states that Enda,, (S)°PP is generated as a K-algebra by the

elements of K;(f;(go) together with any element d € End,, (S)°PP \Ké{fg(go).

Recall that

B={xe, |xe€L, 0<i<p—1}C Ay,
where p € H,v /N is such that its image generates H,,v/N,. In light of
(3.1), we seek an element d € B\ nge;(go) such that d commutes with e,
for all ¢ € Gal(L/Kggg(gO)). We can write d in the following way.

p—1
(4.1) d= Z aje, for some a; € L.
i=0

We want to find suitable coefficients a;. We will determine the precise con-
ditions on the a; which must be satisfied if d is to commute with e; for all

t € Gal(L/KX90)y),
Lemma 4.1. We have NyNy/N = H\ H,v /N as subgroups of G /N, and
therefore
HM N N ~ H]\/I
N N

(4.2)
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and

HMvﬂNfEHMv
N N,

Proof. Clearly, NyNy/N < H, H,~ /N, so it remains to show the reverse
inclusion. We will show that H,,/N < NyN,/N; the argument for H,,v /N
is identical. Recall that G /Ny = Hy /Ny x G /H,;, where H, /N has
order p and G /H,, has order coprime to p. Thus, any non-trivial normal
subgroup of G /Ny contains H,;/N¢. Since N, is a normal subgroup of
G, the subgroup NyN,/Ny is normal in G /Ny. Since we are assuming
that Ny # Ny, Lemma 1.4 tells us that NyNy/Ny¢ is non-trivial. Therefore,
H, /Ny < NyNy/Ny and hence H,, /N < NyNy/N, as required.
To prove the existence of the isomorphism (4.2), we observe that

(0.4 Hy NNy o Ny(HuONg) _ (Hu) - ( Ny
' N Ny Ny Ny

(4.3)

where the final intersection takes place in G /N¢. Above, we showed that
N¢Ny/N = Hy H,v/N. Consequently, NyNy/Ny = H, H,v/Ny. Thus,
the isomorphism (4.2) follows from (4.4). The argument regarding the iso-
morphism (4.3) is identical. O

Lemma 4.2. We have

Gal(L/Kker(a0)) — keﬁv%) ~ (H; Ng) y (kef(QO);ker(fo)) |

sep

Proof. Recall that L = KX | so Gal(L/Kéfg(go)) = ker(go)/N. By defini-

sep?

tion, N = Ny N Ny and Ny = H,, Nker(fy). Therefore,
(HM N Ng> A (ker(go) N ker(fo)) _0
N N -
It remains to show that

(HM]C Ng) (ker(go);ker(fo)) _ kerjsfgo).

Lemma 4.1 shows that

H, NN,  Hy

N Ny
Let s € ker(gp). The cocycle fy gives an isomorphism H, /Ny — M. So
there exists some h € H, NN, such that fo(h) = fo(s). But then s = hh~1s
and h~1s € ker(go) N ker(fo). O

We require that d = esde; ! for all s € Gal(L/Ké{fg(go)). Writing

p—1
d= Z aiepi
=0
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with a; € L, this requirement gives
p—1

Zal P = Z az)esepies_l.

=0

for all s € Gal(L/Ké‘;’; 90)) Recall that Gal(L/Ki2()) = ker(go)/N.
Lemma 4.2 allows us to look separately at conjugation by elements in
(Hy N Ng)/N and (ker(fo) Nker(go))/N. First, we look at conjugation by
et for t € (ker(fy) Nker(go))/N.

Lemma 4.3. For allt € (ker(fo) Nker(go))/N and alli € Z, we have

piet_l = €ypip—1.

Proof. 1If either s or ¢ is in (ker(fp) Nker(gp))/N, then (1.4) gives
wo(s,t) = (s-90(t))(fo(s)) =1

and hence ege; = eg. Thus, for all ¢ € (ker(fo) Nker(gp))/N and for all
i € Z we have ¢; ' = ¢,-1 and ee

ete

piet_l = €1€iC—1 = €ppip-1. O

Lemma 4.1 allows us to assume that p € (H,v N Ny¢)/N, which we will
do from now on. Lemma 4.1 also shows that (H,, N Ny)/N is isomorphic
to Hy /Ny. Thus, (Hy N Ng)/N is a cyclic group of order p. Let o be a
generator of (H, N Ny)/N. In particular, o and p act trivially on both M
and MV. Now we consider conjugation by e,.

Lemma 4.4. For alli € Z, we have ege eyt = (e, where ¢ = g(p)(f(0))

is a primitive pth root of unity in Kgep.

Proof. Recall that o € (Hy, N Ng)/N, so go(o) = 0. Hence, (1.4) gives
@o(t,0!) =1 Vte Gy/N, VjcZ

~1 = ¢,-1 and for all i € Z we have

In particular, e
-1 i _—1 i —1

€oCpiCy = €5€piCs—1 = €apo(p's 0 " )epig—1 = €gpip—1 = (0, p'o " )e,i

The last line holds because o and p commute in G, /N, since their com-

mutator is in the intersection of the normal subgroups (Ny N H,;)/N and
(Ny N Hyv)/N, and this intersection is trivial. Now,

po(o,p'at) = (o-go(p'a"))(folo))
(o - go(p"))(fo(o)) since go(0™!) =0
= g9(p")(f(o)) since o acts trivially on M"Y
= (g9(p)(f(0)))" sinc}; g gives a homomorphism

Therefore, it suffices to show that ( = g(p)(f(o)) is a primitive pth root of
unity. We know that f induces an isomorphism H,,/Ny—=M and f(o)
generates M as an abelian group. Likewise, ¢ induces an isomorphism
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H,v/Ny—M" and g(p) generates M = Hom(M, p,) as an abelian group.
Thus, ¢ = g(p)(f(c)) generates p, as an abelian group. O

Let ¢ = g(p )(f( )). Combining the results of Lemmas 4.3 and 4.4, we
see that d = Y0~ 0 aie,i commutes with e; for all £ € Gal(L/Kéf; 90)) if and
only if

e o(a;)=C"%a; Vic€Zwith0<i<p-1,and
o if t € (ker(fy) Nker(gg))/N is such that tpt=! = p?, then

tla;) =ay VieZwith0<i<p-—1.

Proposition 4.5. Let a € Kgep be such that Ké‘:;(f‘)) K(a). For each
1€ Z with0<i<p-1, let a; = Z?;é(ijaj(a). Then d = 3P, 0 aie,,
commutes with e; for all t € Gal(L/Ké{:g(go)).

Proof. In order to show that o(a;) = (‘a;, it suffices to show that o fixes
¢ € pp. Recall that o acts trivially on both M and M". By definition,
MY = Hom(M, ui,) and therefore the action of o on up is trivial. Now, let
t € (ker(fo) Nker(go))/N and suppose that tpt~! = pf. It suffices to show
that t(a;) = ag;. We have

Zt Yol () =D Q)Y (tot™ ) t(ev)

—Zt ) (tot™) (a)

ker(fo)

since t fixes o, because o € Ksep * . Suppose that ¢ acts as multiplication by
k on M. Then t acts as multiplication by k¢ on p,. We have isomorphisms
of Gy-modules H,, /Ny = M and H,v/Ny; = MY induced by f and g
respectively. Hence,

p—1 p—1
t(a;) = Y t(Q)7 (tot™ ") (a) = Y (o7 (a)
j=0 Jj=0
p—1
=Y Q)0 (@) = ay
§=0
as required. O

So we have found an element d = Y0~ 0 aje,i € B such that d com-

mutes with e; for all ¢ € Gal(L/Ké(:;(go)). By (3.1), this means that d €
Enda, (S§)°PP. We want to show that the K-algebra Endga, (S)°PP is gen-

erated by d together with the elements of Kéfg(go). By Lemma 3.4, it only
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remains to check that d ¢ Kéfg(go). It suffices to show that some a; with
7 > 1 is nonzero.

s . k .
Proposition 4.6. Write stg(fo) = K(«a) with TrK;(:;(fO)/K(a) = 0. For
eachi € Z with 0 < i <p—1, let a; = Z?;é CgI(a). Then there exists
i > 1 with a; # 0. Consequently, d = Zﬁ:& aie,i is not in L.

Proof. Let V denote the Vandermonde matrix ((*)o<; j<p—1. Then a; is the
ith row of V(a,o(a),...,o? 1 (a))?. Also,
det(v)= [ (@ -c)#0
0<i<j<p—1

Thus, V(a,0(a),...,0P 1 (a))? is nonzero, so it has at least one nonzero
row. In other words, at least one of the a;’s is nonzero. But

— o p—1 — —
@ =t @)+ 0P @) = Tryumiry o (a) = 0.
Hence, there exists i > 1 with a; # 0, as required. U

Remark 4.7. Since we assumed from the start that the characteristic of
K is not p, we can subtract p—! Trchr(fO) / K(a) from any generator « of
sep
k
S;;(fO)/K to ensure that TrKg(fO)/K(a) =0.
Corollary 4.8. Enda, (S)°PP is generated as a K-algebra by the elements

of Ksk:;(go) together with the element d described in Proposition 4.6.

Proof. Lemma 3.4 states that End (S)°PP is generated as a K-algebra by

the elements of Kslg(go) together with any d € Enda, (S)°PP\ Ké;eg(go)' By
(3.1) and Proposition 4.5 the d of Proposition 4.6 satisfies d € End 4, (S)°PP.

By Proposition 4.6, this d also satisfies d ¢ Ké;eg(go)' O

5. A minimal polynomial

Our next aim is to show that the K-subalgebra of Enda, (S)°PP gener-
ated by d is isomorphic to K(a) = K;(fg(f 9. We will do this by showing
that d and pa satisfy the same minimal polynomial over K. Recall that o
is a generator for (H, N Ny)/N and p is a generator for (H,v N N¢)/N.
Recall that a € Kep is such that Ké(:;(fo) = K(«) and Trchr(fO)/K(oz) = 0.

sep
Let ¢ = po(o,p) = g(p)(f(o)) and for i € Z with 0 < i < p —1 let
a; = Z?;é (YoI(a). We have d = Zf;& a;e,i. Similarly, let 8 € Kgep
ker . .
be such that Kseep(g(’) = K(p) and TrK§§;(90>/K(6) = 0. For ¢ € Z with

0<i<p-1,let b = Z‘?;(l) ¢l (B). In the proof of Proposition 4.6,
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we showed that a; # 0 for some ¢ > 1. The same argument shows that
by, # 0 for some m > 1. Choose such a b, and denote it by B. We would
like to define a polynomial with roots B¥dB~* for 0 < k < p — 1. We
will show that BFdB~—* commutes with B‘dB~* for every k,{ € Z, so that
P(X) = Hi;(l) (X — B*dB~*) is the desired polynomial. First, we prove two
auxiliary lemmas.

Lemma 5.1. For all k € Z, we have

BFdBF = Z ¢FMage = Z o ™ (a;)

=0
where B = by, = Y025 ¢ p7(B) # 0
Proof. We have

p—1 p—1 p—1
BB = B*Y e B =3 aBfe, B =3 a8 (B

p—1 ) p—1 ' p—1
= Z CLinCkaBikepi = Z Clkmaiepi = Z a*km(ai)ep
=0 =0 1=0

Lemma 5.2. For all i,j, k € Z, we have epiak(aj)epj = Uk(aj)epi+j.

Proof. Since p € (Hyv N Nyf)/N, clearly p fixes ¢ and a. Therefore, p
ﬁxes'crk‘(aj) = P70 ¢H otk (a). Moreover, f(p) = 0 and so (1.4) gives
wo(p',p?) =1 for all i, j € Z. Hence,

epio-k(aj)epj = piak(aj)epiepj = O-k(aj)go()(pi? pj)ep"”rj = Jk(aj)ep””rj'

0
Corollary 5.3. For all k, ¢ € Z, B*dB~% commutes with B'‘dB~*.
Proof. By Lemma 5.1, we have
BFaB kBB~ = Z J_km(ai)epm_ém(aj)epj.
0<i,j<p-—1
By Lemma 5.2, this is equal to
> o (a0 ™ (ag)e v = BYABT BYdBTF.
0<i,j<p—1
O

Proposition 5.4. Let P(X) = Hi;é (X — B*dB~*). Then the coefficients
of P lie in K.
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Since K is the centre of A, it suffices to show that the coefficients of
P commute with every element of A,,. As a K-algebra, A, is generated
by the elements of L and {es}scqai(r/K)- We prove Proposition 5.4 in three
steps.

Lemma 5.5. The coefficients of P commute with x for every x € L.

Proof. We chose p to be a generator of (H,v N Ny)/N. By Lemma 4.1,
(Hyv N Ny)/N is isomorphic to Hyv /Ng. Now Hpv /Ny is isomorphic to
MY and therefore has cardinality p. Hence, [L : L{?)] = p and consequently
L = L (z) for any z € L\ L. Since B = b,, for some m € Z with
1 <m <p-—1, we have p(B) = ("™B # B. Therefore, L = L{?)(B). Ob-
serve that conJugatlon by B permutes the roots of P. For any € L we

have zdr~! = d, since p’(z) = x for such x. Hence, conjugation by x € L<p>
fixes the roots of P. Therefore, conjugation by any element of L fixes the
coefficients of P. O

Lemma 5.6. The coefficients of P commute with e; Yt € Grad(L/Kker 90))

Proof. By construction, d commutes with e; for all t € Gal(L/ Ké;e;(go)).

Suppose t € Gal(L/Ké(ff)r 90)) is such that ¢ acts as multiplication by k& on
M and t acts as multiplication by £ on MY. Then tot~! = o*, because f
induces an isomorphism of G x-modules H,,/Ny = M. Similarly, we have
tpt~1 = p’. By definition of the action on MY = Hom(M, u1,), we have
t(¢) = ¢¥. Therefore,

-1
eBer = 1(B) = S 1) (1ot~ Y1 (4 Zcmﬂ’“pﬂ (8)
=0
= > ¢MEIH(B) =D MR (B)
j=0 Jj=0

because 3 € Kseer(go) and t € Gal(L/Kéfg(go)). Hence,

e:BdB™ ey = t(B)dt(B Z aie,it(B
p_l . p_l .
= t(B)aip’(t(B))_lepi = t(B)(C‘zkmt(B))_laiepi
=0 i=0
p—1

Cikmaiepi = BFdB*F

I
o
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by Lemma 5.1. Thus, we see that conjugation by e; for t € Gal(L/Ké(eef)r 90))
permutes the roots of P. Consequently, the coefficients of P commute with

e for all t € Gal(L/Kéfg go)). O
Lemma 5.7. The coefficients of P commute with e; ¥t € Gal(L/K).

Proof. By Lemma 5.6, the coefficients of P commute with e; for all ¢

in Gal(L/Ké(eeS )). Thus, it suffices to prove that the coefficients of P

commute Wlth e; for all ¢ in some set R of left coset representatives for
Gal(L/KE9)) in Gal(L/K).

By Lemma 3.1, R can be taken to be {p'}o<i<p—1. Since fo(p) = 0, (1.4)
gives @o(p',t) = 1 for all t € Gal(L/K) and all i € Z. Hence, e, = €, for
all ¢ € Z and it suffices to show that the coefficients of P commute Wlth ep-

By Lemma 5.1,

p—1 p—1
(5.1) ekadB_kG;I =e, Z ¢ ae €pic, 1= Z Cmmepa@epzep !
i=0 i=0
because ( is fixed by p, since p € (HMv N Ny¢)/N. By Lemma 5.2, we have
p—1
(5.2) Z C’kmepal Z C*Fmae eyit1e, Z Clkmaz
i=0

Thus, equations (5.1) and (5.2) give ekadB_ke;l = BkdB_k for all k € Z
with 0 < k < p — 1. Hence, the coefficients of P commute with e,,.
O

Combining Lemma 5.5 and Lemma 5.7, we see that the coefficients of P
lie in the centre of A, which is K. Thus, we have proved Proposition 5.4.

Definition 5.8. Let Q(X) be the minimal polynomial of pa over K,
p—1 .
QX) =[] (X =o' (pa)).
i=0
We will show that P = Q and thus conclude that P is irreducible and
K(d) = K(«).

Definition 5.9. We define R(X,Y) =[]i_ (X > 0 ok (a;)Y?).
Lemma 5.10. We have P(X) = R(X,e,) and Q(X) = R(X,1).

Proof. Since p € (H,v N Nf)/N, we have fo(p) = 0 and consequently

©wo(p',p’) = 1 for all i,j € Z. Therefore, ep = e, for all i € Z. Thus, the
equality P(X) = R(X,e,) follows from Lemma 5 1. Regarding the second

claim, we have

p—1

p—1
R(X,1) H (X — Za a;)) = H(X—ak(ZaO).
k=0

k=0 1=0
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Observe that

p—1 p—lp-l L p—1 . p—1 ..
Yai= 33 ¢ola) = 3 o’(@) 3¢ = pa
i=0 i=0 j=0 3=0 i=0

because Zf;& (¥ = 0 unless j = 0. This proves that R(X,1) = Q(X). O
Proposition 5.11. We have P(X) = Q(X).

Proof. Write R(X,Y) = >0~ Z] 0Cij XYI where N = (p — 1)? and
¢ij € L. Then

ZXZ Z > cijY?

j=k (mod p)

where the innermost sum runs over j € Z with 0 < j < N. Therefore,
P(X) = R(X,e,) Z X' Z e > Cij
=0 j=k (mod p)

because p has order p in Gal(L/K), so eb = 1. Hence, the coefficient of X"
is Zk -0 ep >_j=k (mod p) Cij- By Lemma 5 4, the coefficients of P lie in K.

Therefore,
Z Cij = 0,

j=k (mod p)
unless k£ = 0. Consequently,

p—1
(5.3) R(X,Y)=) X' > cijY7.

1=0 j=0 (mod p)
Since ef) = 1, (5.3) gives P(X) = R(X,e,) = R(X,1) = Q(X). O

Corollary 5.12. The minimal polynomial of d over K is P and therefore
K(d) is isomorphic to K(a) = Kég(fo)‘

Proof. Proposition 5.11 shows that d and pa are roots of the same poly-
nomial over K. This polynomial is irreducible because it is the minimal
polynomial of pa. The characteristic of K is not p, so p is invertible and
K(d) 2 K(pa) = K(). O

6. The multiplicative structure

Now that we have found generators for the K-algebra Endy, (S)°PP, it
remains to describe its multiplicative structure. Recall that o € Kgep is

such that Ké{:g(f‘” = K(«a) and TrKker<fO)/K(a) = 0. Similarly, 8 € Ksep is
sep

such that Kig ™) = K(8) and Tr keruo) k(8 =0.
sep
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Definition 6.1. Let
p—1
z=pld=p! Z ;e
i=0

where a; = Z?;é (YgJ(a). Thus, by Proposition 5.11, the minimal polyno-
mial of z over K is the same as that of «.

Corollary 4.8 tells us that the algebra Endy,, (8)°PP is generated over K
by 6 and z. The elements 8z’ for i,j € Z with 0 < 4,7 < p—1 form a
basis for End Agg (S)°PP as a K-vector space. To specify the multiplication
on Endga, (S )°PP_ it is enough to specify structure constants ¢;; € K such
that

z2fB = Z cij8'2.

0<i,j<p—1
Lemma 6.2. Forall j € Z with 0 < j < p—1, we have

p—1
2 =p! Z hjke
k=0
—1 ke ¢ : NeNH v
where hy, = Y0—o (Mo(al) € LIP) = Kooy 7MY

Proof. 1t is easily seen that hgr, = 0 for all k € Z with 1 <k <p—1, and
hoo = p. Thus, the statement holds for j = 0. The statement for j = 1
follows immediately from the definition of z, upon observing that hqy = ay
for all k£ € Z with 0 < k < p — 1. We proceed by induction on j. Suppose
that

p—1

m —1

zZ"M=0p thkepk
k=0

for some m € Z with 0 < m < p — 2. Then,
p—1 p—1
Zmtl = my = (pil Z hmkepk) (pil Z aiepi)
k=0 i=0

p—1
= zf2 Z hmkaiepk+i by Lemma 5.2
i,k=0
p—1
-2
=P Z hmkan—kep"‘
n,k=0
Hence, it suffices to prove that
p—1

Z hinkan—k = ph(m+1)n'
k=0
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We have
p—1

p—1
Z hink@n—k = Z Ckloﬁ(am)g(n—k)jo_j (Oé)
k=0 k,£,j=0

p—1 p—1

_ Z Mot (@™ol () Z cke=3),

£,j=0 k=0
Now observe that Zi;é ¢F(=J) equals zero when ¢ # j, and equals p when
£ = j. This concludes the proof. O

We want to find structure constants ¢;; € K for all integers ¢ and j with
0 <1,j <p—1such that

(6.1) 2 = Z cijB'20.
0<i,j<p—-1

By the definition of z,

p—1 p—1
(6.2) 2B=p! Z aie,ifl = p ! Z al-pi(ﬁ)epi.
i=0 i=0
Using Lemma 6.2, we expand the right-hand side of (6.1) as
p—1 p—1 p—1
(6.3) Z il =pt Z cijf' hjke k.
i,j=0 i,j=0 k=0
Equating (6.2) and (6.3), we obtain for every integer k with 0 <k <p—1
p—1
(6.4) akpk(ﬂ) = Z C,‘jﬂihjk.
i,j=0

Recall that Ny = ker(go) N Hy,v, so Ks]gf) = ngfj‘/[v (B). Moreover, Ny is a
normal subgroup of G, so Kg{‘f Y (B) is Galois over K. Write

p—1
(6.5) PH(B) = maf’
i=0

for my, € KSIZI{)” ¥ c L), We know that L/L{ has degree p and is generated
by . Thus, the elements 1,3, ...3P~! form a basis for L as a vector space
over L{¥). Therefore, combining (6.4) and (6.5) gives

p—1
(66) AEpMmiE = Z Cijhjk
=0

for all i,k € Z with 0 < i,k <p— 1.



242 Rachel NEWTON

Definition 6.3. We define three p-by-p matrices X, Y and Z.
X = (akmir)ik, Y = (cin)ig, 2 = (hi)ik-

In all three cases, the indices ¢ and k run from 0 to p — 1.

In terms of these matrices, (6.6) becomes X = Y Z, where Y is to be
found. We know that such a Y exists and is unique because the elements
B'27 fori,j € Z with 0 <4,j <p —1 form a basis for End4, (S)°PP.

Lemma 6.4. The matriz Z is invertible. Thus, Y = XZ~1.

Proof. Suppose for contradiction that Z is not invertible. Then Z has a non-
trivial kernel and there exists a nonzero matrix 1" such that T'Z = 0. But
then (Y +T)Z =Y Z = X. This contradicts the fact that Y is unique. O

Corollary 6.5. The algebra D described in Theorem 1.9 is Enda, (S)°PP.

Proof. The algebra End, (S)°PP has a basis {B'27}o<i j<p—1 as a K-vector
space, where z satisfies the same minimal polynomial over K as «, and the
multiplication satisfies

p—1
zfB = Z cijﬁizj
i,j=0
where (c;j);; = XZ 7! for X and Z as defined in Definition 6.3. Recall that
Gx /Ny = H, /Ny x Gg/H,, where Hy /Ny has order p and G /H), has
order coprime to p. Thus, any non-trivial normal subgroup of G /Ny con-

er(fo)

tains Hy /N 7 Therefore, the normal closure of Ké(ep in Kgep is equal to

Ks]g{, Since p is a generator for (H,~ N Ny)/N, p acts trivially on the nor-

mal closure of Kéf’;(f O)(,up) and non-trivially on 3. Likewise, ¢ acts trivially

on the normal closure of K§§;(9°)(up) and non-trivially on «a. Therefore,

Enda, (S)°PP is the algebra D described in Theorem 1.9. O

7. An example

We apply Theorem 1.9 to the case M = p,. In this case, any 1-cocycle fy

which represents a non-trivial element f € H'(Gy, M) has Ké{g(f )= K (),
where of € K*. By definition of the Tate dual, G acts trivially on M.
Thus, H' (G, M) =Hom(G , Z/pZ) and any non-trivial g € H' (G, M)
corresponds to a degree p Galois extension Kéf;(g)/K. Let Ké(:;(g) = Keep(S)
with Trg(s)/k(8) = 0. Let 0 € Gk be such that o fixes K(f,p,) and
o(a)/a = ¢ for some primitive pth root of unity ¢. Choose p € G such

that p fixes K (o, pp) and (g(p))(fo(o)) = (. We calculate

p—1 p—1
hij _ Z C]ZO.K(QZ) _ Z C(H—J)(az_

/=0 =0
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Hence, h;; = 0 unless i + j = 0 (mod p). Write p/(3) = Zf;& m; 3 for
m;; € K. An easy matrix calculation shows that

0 mo(p—1) 0O ... 0

_ 0 ml(pfl) 0 ... 0
(hajmig)ig(hig)ij = | . : o

0 mep-np-n 0 ... 0

Now Theorem 1.9 tells us that the class of f U g in Br(K) is given by the
algebra D with K-basis {3’27 }o<i j<p—1, where 2P = of € K, and we have

p—1
2Bzt = Z mip—1)B" = p~1(B).
=0
So in this case D is a cyclic algebra of dimension p? over K.
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