We prove the existence of global minimal models for endomorphisms of projective space defined over the field of fractions of a principal ideal domain.
Nous démontrons l’existence des modèles minimaux globaux pour les endomorphismes de l’espace projectif sur le corps des fractions d’un anneau principal.
@article{JTNB_2014__26_3_813_0, author = {Clayton Petsche and Brian Stout}, title = {Global minimal models for endomorphisms of projective space}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {813--823}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {3}, year = {2014}, doi = {10.5802/jtnb.889}, mrnumber = {3320502}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.889/} }
TY - JOUR AU - Clayton Petsche AU - Brian Stout TI - Global minimal models for endomorphisms of projective space JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 813 EP - 823 VL - 26 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.889/ DO - 10.5802/jtnb.889 LA - en ID - JTNB_2014__26_3_813_0 ER -
%0 Journal Article %A Clayton Petsche %A Brian Stout %T Global minimal models for endomorphisms of projective space %J Journal de théorie des nombres de Bordeaux %D 2014 %P 813-823 %V 26 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.889/ %R 10.5802/jtnb.889 %G en %F JTNB_2014__26_3_813_0
Clayton Petsche; Brian Stout. Global minimal models for endomorphisms of projective space. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 3, pp. 813-823. doi : 10.5802/jtnb.889. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.889/
[1] A. Borel, Some finiteness properties of adele groups over number fields, Inst. Hautes Études Sci. Publ. Math., 16, (1963), 5–30. | Numdam | MR | Zbl
[2] N. Bruin et A. Molnar, Minimal models for rational functions in a dynamical setting, LMS J. Comp. Math., 15, (2012), 400–417. | MR | Zbl
[3] C. C. Cheng, J. H. McKay et S. S. Wang, A chain rule for multivariable resultants, Proc. Amer. Math. Soc., 123, (1995), 4, 1037–1047. | MR | Zbl
[4] S. Lang, Algebra, third ed, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, (2002). | MR | Zbl
[5] C. Petsche, Critically separable rational maps in families, Comp. Math., 148, (2012), 6, 1880–1896. | MR
[6] J. H. Silverman, The arithmetic of dynamical systems. Graduate Texts in Mathematics 241, Springer-Verlag, New York, (2007). | MR | Zbl
[7] J. H. Silverman, The arithmetic of elliptic curves, second ed, Graduate Texts in Mathematics, 106, Springer, Dordrecht, (2009). | MR | Zbl
[8] B. Stout, A dynamical Shafarevich theorem for twists of rational morphisms, Preprint (2013), http://arxiv.org/abs/1308.4992 | MR
[9] L. Szpiro et T. J. Tucker, A Shafarevich-Faltings theorem for rational functions, Pure Appl. Math. Q. 4, (2008), 3, 715–728. | MR | Zbl
[10] B. van der Waerden, Modern Algebra Vol. II, Frederick Ungar Publishing Co., New York, (1949). | MR | Zbl
Cited by Sources: