Global minimal models for endomorphisms of projective space
Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 3, pp. 813-823.

We prove the existence of global minimal models for endomorphisms φ: N N of projective space defined over the field of fractions of a principal ideal domain.

Nous démontrons l’existence des modèles minimaux globaux pour les endomorphismes φ: N N de l’espace projectif sur le corps des fractions d’un anneau principal.

DOI: 10.5802/jtnb.889
Clayton Petsche 1; Brian Stout 2

1 Department of Mathematics Oregon State University Corvallis OR 97331 U.S.A.
2 Ph.D. Program in Mathematics CUNY Graduate Center 365 Fifth Avenue New York, NY 10016-4309 U.S.A.
@article{JTNB_2014__26_3_813_0,
     author = {Clayton Petsche and Brian Stout},
     title = {Global minimal models for endomorphisms of projective space},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {813--823},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {26},
     number = {3},
     year = {2014},
     doi = {10.5802/jtnb.889},
     mrnumber = {3320502},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.889/}
}
TY  - JOUR
AU  - Clayton Petsche
AU  - Brian Stout
TI  - Global minimal models for endomorphisms of projective space
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2014
SP  - 813
EP  - 823
VL  - 26
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.889/
DO  - 10.5802/jtnb.889
LA  - en
ID  - JTNB_2014__26_3_813_0
ER  - 
%0 Journal Article
%A Clayton Petsche
%A Brian Stout
%T Global minimal models for endomorphisms of projective space
%J Journal de théorie des nombres de Bordeaux
%D 2014
%P 813-823
%V 26
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.889/
%R 10.5802/jtnb.889
%G en
%F JTNB_2014__26_3_813_0
Clayton Petsche; Brian Stout. Global minimal models for endomorphisms of projective space. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 3, pp. 813-823. doi : 10.5802/jtnb.889. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.889/

[1] A. Borel, Some finiteness properties of adele groups over number fields, Inst. Hautes Études Sci. Publ. Math., 16, (1963), 5–30. | Numdam | MR | Zbl

[2] N. Bruin et A. Molnar, Minimal models for rational functions in a dynamical setting, LMS J. Comp. Math., 15, (2012), 400–417. | MR | Zbl

[3] C. C. Cheng, J. H. McKay et S. S. Wang, A chain rule for multivariable resultants, Proc. Amer. Math. Soc., 123, (1995), 4, 1037–1047. | MR | Zbl

[4] S. Lang, Algebra, third ed, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, (2002). | MR | Zbl

[5] C. Petsche, Critically separable rational maps in families, Comp. Math., 148, (2012), 6, 1880–1896. | MR

[6] J. H. Silverman, The arithmetic of dynamical systems. Graduate Texts in Mathematics 241, Springer-Verlag, New York, (2007). | MR | Zbl

[7] J. H. Silverman, The arithmetic of elliptic curves, second ed, Graduate Texts in Mathematics, 106, Springer, Dordrecht, (2009). | MR | Zbl

[8] B. Stout, A dynamical Shafarevich theorem for twists of rational morphisms, Preprint (2013), http://arxiv.org/abs/1308.4992 | MR

[9] L. Szpiro et T. J. Tucker, A Shafarevich-Faltings theorem for rational functions, Pure Appl. Math. Q. 4, (2008), 3, 715–728. | MR | Zbl

[10] B. van der Waerden, Modern Algebra Vol. II, Frederick Ungar Publishing Co., New York, (1949). | MR | Zbl

Cited by Sources: