We prove a large sieve type inequality for Maass forms and holomorphic cusp forms with level greater or equal to one and of integral or half-integral weight in short interval.
Nous démontrons une inégalité du type grand crible pour les formes de Maass et les formes cuspidales holomorphes de niveau au moins un et de poids entier ou demi-entier dans un petit intervalle.
@article{JTNB_2014__26_3_757_0, author = {Jonathan Wing Chung Lam}, title = {A local large sieve inequality for cusp forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {757--787}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {3}, year = {2014}, doi = {10.5802/jtnb.887}, mrnumber = {3320500}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.887/} }
TY - JOUR AU - Jonathan Wing Chung Lam TI - A local large sieve inequality for cusp forms JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 757 EP - 787 VL - 26 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.887/ DO - 10.5802/jtnb.887 LA - en ID - JTNB_2014__26_3_757_0 ER -
%0 Journal Article %A Jonathan Wing Chung Lam %T A local large sieve inequality for cusp forms %J Journal de théorie des nombres de Bordeaux %D 2014 %P 757-787 %V 26 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.887/ %R 10.5802/jtnb.887 %G en %F JTNB_2014__26_3_757_0
Jonathan Wing Chung Lam. A local large sieve inequality for cusp forms. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 3, pp. 757-787. doi : 10.5802/jtnb.887. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.887/
[1] J. Cogdell and P. Michel, On the complex moments of symmetric power L-functions at s=1 , Int. Math. Res. Not. 31 , (2004), 1561–1617. | MR | Zbl
[2] J.M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier cofficients of cusp forms, Invent. Math. 70, (1982), 219–288. | MR | Zbl
[3] W. Duke, J.B. Frielander and H. Iwaniec, Bounds for Automorphic L-functions II, Invent. Math. 115, (1994), 219–239. | MR | Zbl
[4] H. Iwaniec, Mean values for Fourier coefficients of cusp forms and sums of Kloosterman sums, Journées Arithmetiqués de Exeter, (1980), 306–321. | MR | Zbl
[5] H. Iwaniec, Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, (2002). | MR | Zbl
[6] H. Iwaniec and P. Michel, The second moment of the symmetric square L-functions, Ann. Acad. Sci. Fenn. Math. 2, (2001), 465–482. | MR | Zbl
[7] H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematics Society Colloquium Publications, Amer. Math. Soc., Providence, RI, (2004). | MR | Zbl
[8] H. Iwaniec, W. Luo and P. Sarnak, P., Low lying zeros of families of L-functions, I.H.E.S. Publ. Math., 91, (2000), 55–131. | MR | Zbl
[9] M. Jutila, On spectral large sieve inequalities, Functiones et Approximatio 28, (2000), 7–18. | MR | Zbl
[10] M. Jutila and Y. Motohashi, Uniform bound for Hecke L-functions, Acta. Math.195, (2005), 61–115. | MR | Zbl
[11] N.N. Lebedev, Special functions and their applications, Dover Books on Mathematics, (1972). | MR | Zbl
[12] W. Luo, Spectral means-values of automorphic L-functions at special points, Analytic Number Theory, Proc. of a Conference in honor of Heini Halberstam, 70, (1982), 219–288. | Zbl
[13] W. Luo and P. Sarnak, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math., 56, (2003), 874–891. | MR | Zbl
[14] Y. Motohashi, Spectral Theory of the Riemann Zeta-Function, Merchant Books, (2008). | Zbl
[15] H.E. Richert, Lectures on Sieve Methods, Tata Institute of Fundamental Research, Bombay, (1976). | Zbl
[16] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 127, (1997). | MR | Zbl
[17] Q. Zhang, A local large sieve inequality for the Maass cusp form. preprint.
Cited by Sources: