Let be a cubic, monic and separable polynomial over a field of characteristic and let be the elliptic curve given by . In this paper we prove that the coefficient at in the –th division polynomial of equals the coefficient at in . For elliptic curves over a finite field of characteristic , the first coefficient is zero if and only if is supersingular, which by a classical criterion of Deuring (1941) is also equivalent to the vanishing of the second coefficient. So the zero loci of the coefficients are equal; the main result in this paper is clearly stronger than this last statement.
Soit un polynôme cubique, unitaire et séparable avec coefficients dans un corps de caractéristique , et soit la courbe elliptique donnée par l’équation . Dans cet article on démontre que le coefficient du monôme dans le –ième polynôme de division de est égal au coefficient du monôme dans . Lorsque le corps de base est fini, le premier coefficient est nul si et seulement si est supersingulière, ce qui, par un critère classique de Deuring (1941), est équivalent à la nullité du deuxième coefficient. Donc les zéros des coefficients sont les mêmes. L’égalité des coefficients qu’on démontre dans cet article entraîne clairement cette égalité de zéros.
@article{JTNB_2014__26_3_595_0, author = {Christophe Debry}, title = {Beyond two criteria for supersingularity: coefficients of division polynomials}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {595--605}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {3}, year = {2014}, doi = {10.5802/jtnb.881}, mrnumber = {3320494}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.881/} }
TY - JOUR AU - Christophe Debry TI - Beyond two criteria for supersingularity: coefficients of division polynomials JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 595 EP - 605 VL - 26 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.881/ DO - 10.5802/jtnb.881 LA - en ID - JTNB_2014__26_3_595_0 ER -
%0 Journal Article %A Christophe Debry %T Beyond two criteria for supersingularity: coefficients of division polynomials %J Journal de théorie des nombres de Bordeaux %D 2014 %P 595-605 %V 26 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.881/ %R 10.5802/jtnb.881 %G en %F JTNB_2014__26_3_595_0
Christophe Debry. Beyond two criteria for supersingularity: coefficients of division polynomials. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 3, pp. 595-605. doi : 10.5802/jtnb.881. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.881/
[1] J. W. S. Cassels, A note on the division values of , Mathematical Proceedings of the Cambridge Philosophical Society 45, (1949), 167–172. | MR | Zbl
[2] W. Castryck, A. Folsom, H. Hubrechts, A.V. Sutherland, The probability that the number of points on the Jacobian of a genus 2 curve is prime, Proceedings of the London Mathematical Society 104, (2012), 1235–1270. | MR
[3] J. Cheon, S. Hahn, Division polynomials of elliptic curves over finite fields, Proc. Japan Acad. Ser. A Math. Sci. 72, 10, (1996), 226–227. | MR | Zbl
[4] M. Deuring, Die Typen der Multiplikatorringe Elliptischer Funktionenkörper, Abh. Math., Sem. Univ. Hamburg 14, (1941), 197–272. | JFM | MR | Zbl
[5] A. Enge, Elliptic curves and their applications to cryptography: An introduction, Kluwer Academic Publishers, (1999).
[6] H. Gunji, The Hasse invariant and –division points of an elliptic curve, Arch. Math. 27, (1976), 148–158. | MR | Zbl
[7] J. McKee, Computing division polynomials, J. Math. Comp. 63, (1994), 767–771. | MR | Zbl
[8] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer–Verlag, New York, (2009). | MR | Zbl
Cited by Sources: