We develop a new method to bound the hyperbolic and spherical Fourier coefficients of Maass forms defined with respect to arbitrary uniform lattices.
On développe une nouvelle méthode pour majorer les coefficients de Fourier hyperboliques et sphériques des formes de Maass définies par rapport à des réseaux uniformes généraux.
Keywords: Maass forms, Fourier coefficients, geodesics, periods, equidistribution, Sobolev norms, wave front lemma
Valentin Blomer 1; Farrell Brumley 2; Alex Kontorovich 3; Nicolas Templier 4
@article{JTNB_2014__26_3_559_0, author = {Valentin Blomer and Farrell Brumley and Alex Kontorovich and Nicolas Templier}, title = {Bounding hyperbolic and spherical coefficients of {Maass} forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {559--578}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {3}, year = {2014}, doi = {10.5802/jtnb.879}, mrnumber = {3320492}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.879/} }
TY - JOUR AU - Valentin Blomer AU - Farrell Brumley AU - Alex Kontorovich AU - Nicolas Templier TI - Bounding hyperbolic and spherical coefficients of Maass forms JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 559 EP - 578 VL - 26 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.879/ DO - 10.5802/jtnb.879 LA - en ID - JTNB_2014__26_3_559_0 ER -
%0 Journal Article %A Valentin Blomer %A Farrell Brumley %A Alex Kontorovich %A Nicolas Templier %T Bounding hyperbolic and spherical coefficients of Maass forms %J Journal de théorie des nombres de Bordeaux %D 2014 %P 559-578 %V 26 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.879/ %R 10.5802/jtnb.879 %G en %F JTNB_2014__26_3_559_0
Valentin Blomer; Farrell Brumley; Alex Kontorovich; Nicolas Templier. Bounding hyperbolic and spherical coefficients of Maass forms. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 3, pp. 559-578. doi : 10.5802/jtnb.879. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.879/
[1] M. B. Bekka and M. Mayer, Ergodic theory and topological dynamics of group action on homogeneous spaces, London Mathematical Society Lecture Note Series, 269, Cambridge University Press, Cambridge, (2000), x+200 pp. | MR | Zbl
[2] J. Bernstein and A. Reznikov, Sobolev norms of automorphic functionals, IMRN (2002), 2155–2174. | MR | Zbl
[3] J. Bernstein and A. Reznikov, Subconvexity bounds for triple -functions and representation theory. Ann. of Math. (2) 172, (2010), no. 3, 1679–1718. | MR | Zbl
[4] D. Bump, Automorphic forms and representations. Cambridge Studies in Advanced Mathematics 55, Cambridge University Press (1996). | MR | Zbl
[5] W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homogeneous varieties. Duke Math. J. 71, (1993), no. 1, 143–179. | MR | Zbl
[6] A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71, (1993), no. 1, 181–209. | MR | Zbl
[7] I. Gelfand, M. Graev, and I. Piatetski-Shapiro, Representation Theory and Automorphic Functions. W.B. Saunders Co., Philadelphia, (1969). | MR | Zbl
[8] A. Good, Cusp forms and eigenfunctions of the Laplacian. Math. Ann., 255, (1981), 523–548. | MR | Zbl
[9] H. Oh and N. Shah, Limits of translates of divergent geodesics and integral points on one-sheeted hyperboloids, Israel J. Math, to appear. | MR | Zbl
[10] A. Reznikov, Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms. J. Amer. Math. Soc. 21, (2008), no. 2, 439–477. | MR | Zbl
[11] A. Reznikov, Geodesic restrictions for the Casimir operator. J. Funct. Anal. 261, (2011), no. 9, 2437–2460. | MR | Zbl
[12] P. Sarnak, Fourth moments of Grössencharakteren zeta functions. Comm. Pure Appl. Math. 38, (1985), no. 2, 167–178. | MR | Zbl
[13] P. Sarnak, Integrals of products of eigenfunctions. Internat. Math. Res. Notices (1994), no. 6, 251–260. | MR | Zbl
[14] A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity. Ann. of Math. (2) 172, (2010), no. 2, 989–1094. | MR | Zbl
Cited by Sources: