An explicit computation of p-stabilized vectors
Journal de Théorie des Nombres de Bordeaux, Volume 26 (2014) no. 2, pp. 531-558.

In this paper, we give a concrete method to compute p-stabilized vectors in the space of parahori-fixed vectors for connected reductive groups over p-adic fields. An application to the global setting is also discussed. In particular, we give an explicit p-stabilized form of a Saito-Kurokawa lift.

Nous donnons une méthode concrète pour calculer les vecteurs p-stables dans l’espace des éléments fixés par un sous-groupe parahorique d’un groupe réductif p-adique. Nous discutons d’une application globale et, en particulier, nous donnons un exemple explicite d’un relèvement de Saito-Kurokawa p-stable.

Received:
Accepted:
Published online:
DOI: 10.5802/jtnb.878
Classification: 11F85,  22E50
@article{JTNB_2014__26_2_531_0,
     author = {Michitaka MIYAUCHI and Takuya YAMAUCHI},
     title = {An explicit computation of $p$-stabilized vectors},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {531--558},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {26},
     number = {2},
     year = {2014},
     doi = {10.5802/jtnb.878},
     mrnumber = {3320491},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.878/}
}
TY  - JOUR
TI  - An explicit computation of $p$-stabilized vectors
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2014
DA  - 2014///
SP  - 531
EP  - 558
VL  - 26
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.878/
UR  - https://www.ams.org/mathscinet-getitem?mr=3320491
UR  - https://doi.org/10.5802/jtnb.878
DO  - 10.5802/jtnb.878
LA  - en
ID  - JTNB_2014__26_2_531_0
ER  - 
%0 Journal Article
%T An explicit computation of $p$-stabilized vectors
%J Journal de Théorie des Nombres de Bordeaux
%D 2014
%P 531-558
%V 26
%N 2
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.878
%R 10.5802/jtnb.878
%G en
%F JTNB_2014__26_2_531_0
Michitaka MIYAUCHI; Takuya YAMAUCHI. An explicit computation of $p$-stabilized vectors. Journal de Théorie des Nombres de Bordeaux, Volume 26 (2014) no. 2, pp. 531-558. doi : 10.5802/jtnb.878. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.878/

[1] A. N. Andrianov, Quadratic forms and Hecke operators, Springer Berlin (1987). | MR: 884891 | Zbl: 0613.10023

[2] S. Böcherer, Siegfried On the Hecke operator U(p). With an appendix by Ralf Schmidt. J. Math. Kyoto Univ. 45, 4 (2005), 807–829. | MR: 2226631 | Zbl: 1114.11044

[3] A. Borel, Automorphic L -functions. Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I.,(1979) 27–61. | MR: 546608 | Zbl: 0412.10017

[4] A. Borel and H. Jacquet, Automorphic forms and automorphic representations. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. Proc. Sympos. Pure Math., XXXIII, Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, 189–207. | MR: 546598 | Zbl: 0414.22020

[5] C. J. Bushnell and P. C. Kutzko, Smooth representations of reductive p -adic groups: structure theory via types. Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. | MR: 1643417 | Zbl: 0911.22014

[6] W. Casselman, Introduction to admissible representations of p-adic groups, available at his homepage.

[7] Robert F. Coleman, Classical and overconvergent modular forms. Invent. Math. 124, 1-3 (1996), 215–241. | MR: 1369416 | Zbl: 0851.11030

[8] P. Garrett, Representations with Iwahori-fixed vectors. Note available at his homepage .

[9] M. Goresky, Compactifications and cohomology of modular varieties. Harmonic analysis, the trace formula, and Shimura varieties, , Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, (2005), 551–582. | MR: 2192016 | Zbl: 1158.14306

[10] R. Howe Harish-Chandra homomorphisms for p-adic groups, 59 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, (1985). With the collaboration of A. Moy. | MR: 821216 | Zbl: 0593.22014

[11] T. Ibukiyama, Saito-Kurokawa liftings of level N and practical construction of Jacobi forms, Kyoto J. Math. 52, 1 (2012), 141–178. | MR: 2892771 | Zbl: 1284.11085

[12] H. Jacquet, Sur les représentations des groupes réductifs p-adiques, C. R. Acad. Sci. Paris Ser. A-B 280 (1975), Aii, A1271–A1272. | MR: 369624 | Zbl: 0309.22012

[13] D. Keys, Principal series representations of special unitary groups over local fields, Compositio Math. 51, 1 (1984), 115–130. | Numdam | MR: 734788 | Zbl: 0547.22009

[14] B. Mazur, An “infinite fern” in the universal deformation space of Galois representations, Collect. Math., 48, 1-2 (1997), 155–193. Journées Arithmétiques (Barcelona, 1995). | MR: 1464022 | Zbl: 0865.11046

[15] J. S. Milne, Introduction to Shimura varieties. In Harmonic analysis, the trace formula, and Shimura varieties, 4 of Clay Math. Proc., (2005) 265–378. Amer. Math. Soc., Providence, RI. | MR: 2192012 | Zbl: 1148.14011

[16] B. Roberts and R. Schmidt, Local newforms for GSp(4). Lecture Notes in Mathematics, 1918, Springer, Berlin, (2007), viii+307 pp. | MR: 2344630 | Zbl: 1126.11027

[17] R. Salvati Manni and J. Top, Cusp forms of weight 2 for the group Γ(4,8), Amer. J. Math. 115, (1993), 455–486. | MR: 1216438 | Zbl: 0780.11024

[18] I. Satake, Algebraic structures of symmetric domains Kano Memorial Lectures, 4. Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., (1980). xvi+321 pp. | MR: 591460 | Zbl: 0483.32017

[19] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Reprint of the 1971 original. Publications of the Mathematical Society of Japan, 11, Kano Memorial Lectures, 1. Princeton University Press, Princeton, NJ, (1994). | MR: 1291394 | Zbl: 0872.11023

[20] C. Skinner and E. Urban, Sur les déformations p-adiques de certaines représentations automorphes. J. Inst. Math. Jussieu 5, 4 (2006), 629–698. | MR: 2261226 | Zbl: 1169.11314

[21] J. Tilouine, Nearly ordinary rank four Galois representations and p-adic Siegel modular forms. With an appendix by Don Blasius. Compos. Math. 142, 5 (2006), 1122–1156. | MR: 2264659 | Zbl: 1159.11018

Cited by Sources: