Let denote the set of –approximable points in . The classical Khintchine–Groshev theorem assumes a monotonicity condition on the approximating functions . Removing monotonicity from the Khintchine–Groshev theorem is attributed to different authors for different cases of and . It can not be removed for as Duffin–Schaeffer provided the counter example. We deal with the only remaining case and thereby remove all unnecessary conditions from the Khintchine–Groshev theorem.
Soit l’ensemble des points – approximables dans . Le théorème classique de Khintchine–Groshev suppose une condition de monotonicité sur la fonction approximante . Différents auteurs ont pu supprimer cette condition pour différents et . Mais elle ne peut pas être supprimée quand , Duffin et Schaeffer ayant donné un contre-exemple. Nous traitons le seul cas restant , et donc toutes les conditions non-nécessaires dans le théorème de Khintchine–Groshev sont maintenant enlevées.
Keywords: Diophantine approximation; systems of linear forms; Khintchine–Groshev theorem.
Mumtaz Hussain 1; Tatiana Yusupova 2
@article{JTNB_2014__26_2_385_0, author = {Mumtaz Hussain and Tatiana Yusupova}, title = {A note on the weighted {Khintchine-Groshev} {Theorem}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {385--397}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {2}, year = {2014}, doi = {10.5802/jtnb.872}, mrnumber = {3320485}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.872/} }
TY - JOUR AU - Mumtaz Hussain AU - Tatiana Yusupova TI - A note on the weighted Khintchine-Groshev Theorem JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 385 EP - 397 VL - 26 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.872/ DO - 10.5802/jtnb.872 LA - en ID - JTNB_2014__26_2_385_0 ER -
%0 Journal Article %A Mumtaz Hussain %A Tatiana Yusupova %T A note on the weighted Khintchine-Groshev Theorem %J Journal de théorie des nombres de Bordeaux %D 2014 %P 385-397 %V 26 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.872/ %R 10.5802/jtnb.872 %G en %F JTNB_2014__26_2_385_0
Mumtaz Hussain; Tatiana Yusupova. A note on the weighted Khintchine-Groshev Theorem. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 2, pp. 385-397. doi : 10.5802/jtnb.872. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.872/
[1] V. Beresnevich, V. Bernik, M. Dodson and S. Velani, Classical metric Diophantine approximation revisited in Analytic number theory, (2009) Cambridge Univ. Press, 38–61. | MR | Zbl
[2] V. Beresnevich, D. Dickinson and S. Velani, Measure theoretic laws for lim sup sets, Mem. Amer. Math. Soc., 179(846), (2006), x+91. | MR | Zbl
[3] V. Beresnevich, A. Haynes and S. Velani, Multiplicative zero-one laws and metric number theory, Acta Arith., 160,2 , (2013), 101–114. | MR | Zbl
[4] V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math.(2), 164,3, (2006), 971–992. | MR | Zbl
[5] V. Beresnevich and S. Velani, Schmidt’s theorem, Hausdorff measures, and slicing, Int. Math. Res. Not., 24, (2006), Art. ID 48794. | MR | Zbl
[6] V. Beresnevich and S. Velani, A note on zero-one laws in metrical Diophantine approximation, Acta Arith., 133, 4, (2008), 363–374. | MR | Zbl
[7] V. Beresnevich and S. Velani, Classical metric Diophantine approximation revisited: the Khintchine-Groshev theorem, Int. Math. Res. Not. IMRN, 1, (2010), 69–86. | MR | Zbl
[8] D. Dickinson and M. Hussain, The metric theory of mixed type linear forms, Int. J. Number Theory, 9, 1, (2013), 77–90. | MR | Zbl
[9] M. M. Dodson, Geometric and probabilistic ideas in the metric theory of Diophantine approximations, Uspekhi Mat. Nauk, 48, 5 (293), (1993), 77–106. | MR | Zbl
[10] R. J. Duffin and A. C. Schaeffer, Khintchine’s problem in metric Diophantine approximation, Duke Math. J., 8, (1941), 243–255. | MR | Zbl
[11] A. V. Groshev, Un théoreme sur les systèmes des formes lineaires, Doklady Akad. Nauk SSSR., 19, (1938), 151–152. | Zbl
[12] G. Harman, Metric number theory, London Mathematical Society Monographs New Series, The Clarendon Press Oxford University Press, New York, 18, (1998). | MR | Zbl
[13] M. Hussain and S. Kristensen, Metrical results on systems of small linear forms, Int. J. of Number theory, 9, 3, (2013), 769–782. | MR
[14] M. Hussain and J. Levesley, The metrical theory of simultaneously small linear forms, Funct. Approx. Comment. Math., 48, 2, (2013), 167–181. | MR
[15] A. Khintchine, Zur metrischen theorie der diophantischen approximationen, Math. Zeitschr., 24, 1, (1926), 706–714. | MR
[16] A. Khintchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92, 1-2, (1924), 115–125. | MR
[17] L. Li, Zero-one laws in simultaneous and multiplicative diophantine approximation, Mathematika, 59, 2, (2013), 321–332. | MR
[18] V. G. Sprindžuk, Metric theory of Diophantine approximations, V. H. Winston & Sons, Washington, D.C. Translated from the Russian and edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta Series in Mathematics, (1979). | MR
[19] T. Yusupova, Problems in metric Diophantine approximations, D. Phil thesis. University of York, U. K., (2011).
Cited by Sources: