A note on the weighted Khintchine-Groshev Theorem
Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 2, pp. 385-397.

Let W(m,n;ψ ̲) denote the set of ψ 1 ,...,ψ n –approximable points in mn . The classical Khintchine–Groshev theorem assumes a monotonicity condition on the approximating functions ψ ̲. Removing monotonicity from the Khintchine–Groshev theorem is attributed to different authors for different cases of m and n. It can not be removed for m=n=1 as Duffin–Schaeffer provided the counter example. We deal with the only remaining case m=2 and thereby remove all unnecessary conditions from the Khintchine–Groshev theorem.

Soit W(m,n;ψ ̲) l’ensemble des points ψ 1 ,...,ψ n – approximables dans mn . Le théorème classique de Khintchine–Groshev suppose une condition de monotonicité sur la fonction approximante ψ ̲. Différents auteurs ont pu supprimer cette condition pour différents m et n. Mais elle ne peut pas être supprimée quand m=n=1, Duffin et Schaeffer ayant donné un contre-exemple. Nous traitons le seul cas restant m=2, et donc toutes les conditions non-nécessaires dans le théorème de Khintchine–Groshev sont maintenant enlevées.

DOI: 10.5802/jtnb.872
Classification: 11J83, 11J13, 11K60
Keywords: Diophantine approximation; systems of linear forms; Khintchine–Groshev theorem.
Mumtaz Hussain 1; Tatiana Yusupova 2

1 School of Mathematical and Physical Sciences The University of Newcastle Callaghan, NSW 2308, Australia
2 Department of Mathematics University of York Heslington,York, YO105DD, UK
     author = {Mumtaz Hussain and Tatiana Yusupova},
     title = {A note on the weighted {Khintchine-Groshev} {Theorem}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {385--397},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {26},
     number = {2},
     year = {2014},
     doi = {10.5802/jtnb.872},
     mrnumber = {3320485},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.872/}
AU  - Mumtaz Hussain
AU  - Tatiana Yusupova
TI  - A note on the weighted Khintchine-Groshev Theorem
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2014
SP  - 385
EP  - 397
VL  - 26
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.872/
UR  - https://www.ams.org/mathscinet-getitem?mr=3320485
UR  - https://doi.org/10.5802/jtnb.872
DO  - 10.5802/jtnb.872
LA  - en
ID  - JTNB_2014__26_2_385_0
ER  - 
%0 Journal Article
%A Mumtaz Hussain
%A Tatiana Yusupova
%T A note on the weighted Khintchine-Groshev Theorem
%J Journal de théorie des nombres de Bordeaux
%D 2014
%P 385-397
%V 26
%N 2
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.872
%R 10.5802/jtnb.872
%G en
%F JTNB_2014__26_2_385_0
Mumtaz Hussain; Tatiana Yusupova. A note on the weighted Khintchine-Groshev Theorem. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 2, pp. 385-397. doi : 10.5802/jtnb.872. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.872/

[1] V. Beresnevich, V. Bernik, M. Dodson and S. Velani, Classical metric Diophantine approximation revisited in Analytic number theory, (2009) Cambridge Univ. Press, 38–61. | MR | Zbl

[2] V. Beresnevich, D. Dickinson and S. Velani, Measure theoretic laws for lim sup sets, Mem. Amer. Math. Soc., 179(846), (2006), x+91. | MR | Zbl

[3] V. Beresnevich, A. Haynes and S. Velani, Multiplicative zero-one laws and metric number theory, Acta Arith., 160,2 , (2013), 101–114. | MR | Zbl

[4] V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math.(2), 164,3, (2006), 971–992. | MR | Zbl

[5] V. Beresnevich and S. Velani, Schmidt’s theorem, Hausdorff measures, and slicing, Int. Math. Res. Not., 24, (2006), Art. ID 48794. | MR | Zbl

[6] V. Beresnevich and S. Velani, A note on zero-one laws in metrical Diophantine approximation, Acta Arith., 133, 4, (2008), 363–374. | MR | Zbl

[7] V. Beresnevich and S. Velani, Classical metric Diophantine approximation revisited: the Khintchine-Groshev theorem, Int. Math. Res. Not. IMRN, 1, (2010), 69–86. | MR | Zbl

[8] D. Dickinson and M. Hussain, The metric theory of mixed type linear forms, Int. J. Number Theory, 9, 1, (2013), 77–90. | MR | Zbl

[9] M. M. Dodson, Geometric and probabilistic ideas in the metric theory of Diophantine approximations, Uspekhi Mat. Nauk, 48, 5 (293), (1993), 77–106. | MR | Zbl

[10] R. J. Duffin and A. C. Schaeffer, Khintchine’s problem in metric Diophantine approximation, Duke Math. J., 8, (1941), 243–255. | MR | Zbl

[11] A. V. Groshev, Un théoreme sur les systèmes des formes lineaires, Doklady Akad. Nauk SSSR., 19, (1938), 151–152. | Zbl

[12] G. Harman, Metric number theory, London Mathematical Society Monographs New Series, The Clarendon Press Oxford University Press, New York, 18, (1998). | MR | Zbl

[13] M. Hussain and S. Kristensen, Metrical results on systems of small linear forms, Int. J. of Number theory, 9, 3, (2013), 769–782. | MR

[14] M. Hussain and J. Levesley, The metrical theory of simultaneously small linear forms, Funct. Approx. Comment. Math., 48, 2, (2013), 167–181. | MR

[15] A. Khintchine, Zur metrischen theorie der diophantischen approximationen, Math. Zeitschr., 24, 1, (1926), 706–714. | MR

[16] A. Khintchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92, 1-2, (1924), 115–125. | MR

[17] L. Li, Zero-one laws in simultaneous and multiplicative diophantine approximation, Mathematika, 59, 2, (2013), 321–332. | MR

[18] V. G. Sprindžuk, Metric theory of Diophantine approximations, V. H. Winston & Sons, Washington, D.C. Translated from the Russian and edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta Series in Mathematics, (1979). | MR

[19] T. Yusupova, Problems in metric Diophantine approximations, D. Phil thesis. University of York, U. K., (2011).

Cited by Sources: