Let be a real quadratic field with ring of integers . In this paper we analyze the number of -orbits of homothety classes of perfect unary forms over as a function of . We compute exactly for square-free . By relating perfect forms to continued fractions, we give bounds on and address some questions raised by Watanabe, Yano, and Hayashi.
Soit un corps quadratique réel avec anneau d’entiers . Dans cet article, nous analysons le nombre de -orbites de classes d’homothétie des formes parfaites unaires sur en fonction de . Nous calculons exactement pour , sans carré. En reliant les formes parfaites aux fractions continues, nous donnons des bornes sur et répondons à certaines questions de Watanabe, Yano et Hayashi.
Keywords: quadratic forms, perfect forms, continued fractions, real quadratic fields
@article{JTNB_2013__25_3_759_0, author = {Dan Yasaki}, title = {Perfect unary forms over real quadratic fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {759--775}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {3}, year = {2013}, doi = {10.5802/jtnb.854}, mrnumber = {3179682}, zbl = {06291373}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.854/} }
TY - JOUR AU - Dan Yasaki TI - Perfect unary forms over real quadratic fields JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 759 EP - 775 VL - 25 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.854/ DO - 10.5802/jtnb.854 LA - en ID - JTNB_2013__25_3_759_0 ER -
%0 Journal Article %A Dan Yasaki %T Perfect unary forms over real quadratic fields %J Journal de théorie des nombres de Bordeaux %D 2013 %P 759-775 %V 25 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.854/ %R 10.5802/jtnb.854 %G en %F JTNB_2013__25_3_759_0
Dan Yasaki. Perfect unary forms over real quadratic fields. Journal de théorie des nombres de Bordeaux, Volume 25 (2013) no. 3, pp. 759-775. doi : 10.5802/jtnb.854. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.854/
[1] Eva Bayer-Fluckiger and Gabriele Nebe, On the Euclidean minimum of some real number fields. J. Théor. Nombres Bordeaux, 17(2) (2005), 437–454. | Numdam | MR | Zbl
[2] Paul E. Gunnells and Dan Yasaki, Hecke operators and Hilbert modular forms. In Algorithmic number theory, volume 5011 of Lecture Notes in Comput. Sci., pages 387–401. Springer, Berlin, 2008. | MR | Zbl
[3] A. Hurwitz, Ueber die Reduction der binären quadratischen Formen. Math. Ann., 45(1) (1894), 85–117. | MR
[4] Max Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. I. Math. Ann., 141 (1960), 384–432. | MR | Zbl
[5] Alar Leibak, The complete enumeration of binary perfect forms over the algebraic number field . Proc. Estonian Acad. Sci. Phys. Math., 54(4) (2005), 212–234. | MR | Zbl
[6] Trygve Nagel, Zur arithmetik der polynome. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1 (1922), 178–193. 10.1007/BF02940590. | MR
[7] Heidrun E. Ong, Perfect quadratic forms over real-quadratic number fields. Geom. Dedicata, 20(1) (1986), 51–77. | MR | Zbl
[8] Kenji Okuda and Syouji Yano, A generalization of Voronoï’s theorem to algebraic lattices. J. Théor. Nombres Bordeaux, 22(3) (2010), 727–740. | Numdam | MR | Zbl
[9] Kenneth H. Rosen, Elementary number theory and its applications. Pearson, Reading, MA, sixth edition, 2010. | Zbl
[10] Achill Schürmann, Enumerating perfect forms. In Quadratic forms—algebra, arithmetic, and geometry, volume 493 of Contemp. Math., pages 359–377. Amer. Math. Soc., Providence, RI, 2009. | MR | Zbl
[11] François Sigrist, Cyclotomic quadratic forms. J. Théor. Nombres Bordeaux, 12(2) (2000), 519–530. Colloque International de Théorie des Nombres (Talence, 1999). | Numdam | MR | Zbl
[12] G. Voronoǐ, Sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math., 133 (1908), 97–178.
[13] Takao Watanabe, Syouji Yano, and Takuma Hayashi, Voronoï’s reduction theory of over a totally real field. Preprint at http://www.math.sci.osaka-u.ac.jp/~twatanabe/voronoireduction.pdf. | MR
Cited by Sources: