The factorization of f(x)x n +g(x) with f(x) monic and of degree 2.
Journal de Théorie des Nombres de Bordeaux, Volume 25 (2013) no. 3, pp. 565-578.

In this paper we investigate the factorization of the polynomials f(x)x n +g(x)[x] in the special case where f(x) is a monic quadratic polynomial with negative discriminant. We also mention similar results in the case that f(x) is monic and linear.

Dans cet article, nous étudions la factorisation des polynômes f(x)x n +g(x)[x] dans le cas particulier où f(x) est un polynôme quadratique unitaire avec discriminant négatif. Nous mentionnons également des résultats similaires dans le cas où f(x) est unitaire et linéaire.

Received:
Revised:
Published online:
DOI: 10.5802/jtnb.849
Classification: 11C08,  12E05,  26C10
Keywords: polynomials, trinomials, irreducible, factorization
@article{JTNB_2013__25_3_565_0,
     author = {Joshua Harrington and Andrew Vincent and Daniel White},
     title = {The factorization of $f(x)x^n+g(x)$ with $f(x)$ monic and of degree $\le 2$.},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {565--578},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {25},
     number = {3},
     year = {2013},
     doi = {10.5802/jtnb.849},
     zbl = {1293.11049},
     mrnumber = {3179677},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.849/}
}
TY  - JOUR
TI  - The factorization of $f(x)x^n+g(x)$ with $f(x)$ monic and of degree $\le 2$.
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2013
DA  - 2013///
SP  - 565
EP  - 578
VL  - 25
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.849/
UR  - https://zbmath.org/?q=an%3A1293.11049
UR  - https://www.ams.org/mathscinet-getitem?mr=3179677
UR  - https://doi.org/10.5802/jtnb.849
DO  - 10.5802/jtnb.849
LA  - en
ID  - JTNB_2013__25_3_565_0
ER  - 
%0 Journal Article
%T The factorization of $f(x)x^n+g(x)$ with $f(x)$ monic and of degree $\le 2$.
%J Journal de Théorie des Nombres de Bordeaux
%D 2013
%P 565-578
%V 25
%N 3
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.849
%R 10.5802/jtnb.849
%G en
%F JTNB_2013__25_3_565_0
Joshua Harrington; Andrew Vincent; Daniel White. The factorization of $f(x)x^n+g(x)$ with $f(x)$ monic and of degree $\le 2$.. Journal de Théorie des Nombres de Bordeaux, Volume 25 (2013) no. 3, pp. 565-578. doi : 10.5802/jtnb.849. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.849/

[1] A. Brauer, On the irreducibility of polynomials with large third coefficient. Amer. J. Math. 70 (1948), 423–432. | MR: 25490 | Zbl: 0035.00902

[2] A. Brauer, On the irreducibility of polynomials with large third coefficient II. Amer. J. Math. 73 (1951), 717–720. | MR: 43131 | Zbl: 0042.25201

[3] J.B. Conway, Functions of One Complex Variable. New York: Springer-Verlag. | MR: 503901 | Zbl: 0887.30003

[4] M. Filaseta, K. Ford, S. Konyagin, On an irreducibility theorem of A. Schinzel associated with covering of the integers. Illinois J. Math. 44(3) (2000), 633–643. | MR: 1772434 | Zbl: 0966.11046

[5] J. Harrington, On the Factorization of the Trinomials x n +cx n-1 +d. Int. J. Number Theory 08 (2012), 1513–1518. | MR: 2965763 | Zbl: pre06078186

[6] A. Schinzel, On the reducibility of polynomials and in particular of trinomials. Acta. Arith. 11 (1965), 1–34. | MR: 180549 | Zbl: 0196.31104

[7] A. Schinzel, Reducibility of polynomials and covering systems of congruences. Acta. Arith. 13 (1967), 91–101. | MR: 219515 | Zbl: 0171.00701

Cited by Sources: