On the distribution of sparse sequences in prime fields and applications
Journal de Théorie des Nombres de Bordeaux, Volume 25 (2013) no. 2, pp. 317-329.

In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the L 1 -norm of trigonometric sums.

Dans cet article, nous étudions les propriétés de distribution de suites parsemées modulo presque tous le nombres premiers. On obtient des résultats nouveaux pour une large classe de suites parsemées avec applications aux problèmes additifs et au problème de Littlewood discret en rapport avec l’estimation des bornes inférieures de la norme L 1 de sommes trigonométriques.

Published online:
DOI: 10.5802/jtnb.838
Víctor Cuauhtemoc García 1

1 Departamento de Ciencias Básicas Universidad Autónoma Metropolitana–Azcapotzalco C.P. 02200, México D.F., México
@article{JTNB_2013__25_2_317_0,
     author = {V{\'\i}ctor Cuauhtemoc Garc{\'\i}a},
     title = {On the distribution of sparse sequences in prime fields and applications},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {317--329},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {25},
     number = {2},
     year = {2013},
     doi = {10.5802/jtnb.838},
     zbl = {06250454},
     mrnumber = {3228310},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.838/}
}
TY  - JOUR
TI  - On the distribution of sparse sequences in prime fields and applications
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2013
DA  - 2013///
SP  - 317
EP  - 329
VL  - 25
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.838/
UR  - https://zbmath.org/?q=an%3A06250454
UR  - https://www.ams.org/mathscinet-getitem?mr=3228310
UR  - https://doi.org/10.5802/jtnb.838
DO  - 10.5802/jtnb.838
LA  - en
ID  - JTNB_2013__25_2_317_0
ER  - 
%0 Journal Article
%T On the distribution of sparse sequences in prime fields and applications
%J Journal de Théorie des Nombres de Bordeaux
%D 2013
%P 317-329
%V 25
%N 2
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.838
%R 10.5802/jtnb.838
%G en
%F JTNB_2013__25_2_317_0
Víctor Cuauhtemoc García. On the distribution of sparse sequences in prime fields and applications. Journal de Théorie des Nombres de Bordeaux, Volume 25 (2013) no. 2, pp. 317-329. doi : 10.5802/jtnb.838. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.838/

[1] W. D. Banks, A. Conflitti, J. B. Friedlander and I. E. Shparlinski, Exponential sums over Mersenne numbers. Compos. Math. 140 (2004), no. 1, 15–30. | MR: 2004121 | Zbl: 1060.11045

[2] W. D. Banks, M. Z. Garaev, F. Luca and I. E. Shparlinski, Uniform distribution of fractional parts related to pseudoprimes. Canad. J. Math. 61 (2009), no. 3, 481–502. | MR: 2514480 | Zbl: 1255.11040

[3] J. Bourgain, Estimates on exponential sums related to the Diffie–Hellman distributions. Geom. Funct. Anal. 15 (2005), no. 1, 1–34. | MR: 2140627 | Zbl: 1102.11041

[4] E. Croot, Sums of the form 1/x 1 k ++1/x n k modulo a prime. Integers 4 (2004), A20, 6 pp. | MR: 2116005 | Zbl: 1083.11019

[5] C. Elsholtz, The distribution of sequences in residue classes. Proc. Amer. Math. Soc. 130 (2002), no. 8, 2247–2250. | MR: 1896404 | Zbl: 1004.11052

[6] P. Erdős and M. R.  Murty, On the order of a(modp). Proc. 5th Canadian Number Theory Association Conf., Amer. Math. Soc., Providence, RI, 1999, 87–97. | MR: 1684594 | Zbl: 0931.11034

[7] M. Z. Garaev, Upper bounds for the number of solutions of a diophantine equation. Trans. Amer. Math. Soc. 357 (2005), no. 6, 2527–2534. | MR: 2140449 | Zbl: 1114.11031

[8] M. Z. Garaev, The large sieve inequality for the exponential sequence λ [O(n 15/14+o(1) )] modulo primes. Canad. J. Math. 61 (2009), no. 2, 336–350. | MR: 2504019 | Zbl: 1179.11024

[9] M. Z. Garaev and Ka–Lam Kueh, Distribution of special sequences modulo a large prime. Int. J. Math. Math. Sci. 50 (2003), 3189–3194. | MR: 2012641 | Zbl: 1037.11002

[10] M. Z. Garaev and I. E. Shparlinski, The large sieve inequality with exponential functions and the distribution of Mersenne numbers modulo primes. Int. Math. Res. Not. 39 (2005), no. 39, 2391–2408. | MR: 2181356 | Zbl: 1162.11378

[11] V. C. García, F. Luca and V. J. Mejía, On sums of Fibonacci numbers modulo p. Bull. Aust. Math. Soc. 83 (2011), 413–419. | MR: 2794527 | Zbl: 1238.11011

[12] A. A. Glibichuk, Combinatorial properties of sets of residues modulo a prime and the Erdős–Graham problem. Mat. Zametki. 79 (2006), no. 3, 384–395; English transl., Math. Notes. 79 (2006). no. 3–4, 356–365. | MR: 2251362 | Zbl: 1129.11004

[13] B. Green and S. V. Konyagin, On the Littlewood problem modulo a prime. Canad. J. Math. 61 (2009), no. 1, 141–164. | MR: 2488453 | Zbl: 1232.11013

[14] A. A. Karatsuba, An estimate of the L 1 -norm of an expontential sum. Math. Notes 64 (1998), no. 3, 401–404. | MR: 1680181 | Zbl: 0924.11065

[15] S. V. Konyagin, On a problem of Littlewood. Izv. Acad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.] 45 (1981), no. 2, 243–265. | MR: 616222 | Zbl: 0493.42004

[16] S. V. Konyagin, An estimate of the L 1 -norm of an exponential sum. The Theory of Approximations of Functions and Operators. Abstracts of Papers of the International Conference Dedicated to Stechkin’s 80th Anniversary [in Russian]. Ekaterinburg, 2000, pp. 88-89.

[17] O. C. McGehee, L. Pigno and B. Smith, Hardy’s inequality and the L 1 norm of exponential sums. Ann. of Math. (2) 113 (1981), no. 3, 613–618. | MR: 621019 | Zbl: 0473.42001

[18] F. Pappalardi, On the order of finitely generated subgroups of * (modp) and divisors of p-1. J. Number Theory 57 (1996), 207–222. | MR: 1382747 | Zbl: 0847.11049

[19] A. Sárközy, On sums and products of residues modulo p. Acta Arith. 118 (2005), no. 4, 403–409. | MR: 2165553 | Zbl: 1078.11011

[20] T. Schoen and I. Shkredov, Additive properties of multiplicative subgroups of 𝔽 p . Quart. J. Math. 63 (2012), no. 3, 713–722. | MR: 2967172 | Zbl: 1271.11014

[21] I. E. Shplarlinski, On a question of Erdős and Graham. Arch. Math. 78 (2002), 445–448. | MR: 1921733 | Zbl: 1034.11012

Cited by Sources: