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On the distribution of sparse sequences in prime
fields and applications

par Víctor Cuauhtemoc GARCÍA

Résumé. Dans cet article, nous étudions les propriétés de dis-
tribution de suites parsemées modulo presque tous le nombres
premiers. On obtient des résultats nouveaux pour une large classe
de suites parsemées avec applications aux problèmes additifs et au
problème de Littlewood discret en rapport avec l’estimation des
bornes inférieures de la norme L1 de sommes trigonométriques.

Abstract. In the present paper we investigate distributional
properties of sparse sequences modulo almost all prime numbers.
We obtain new results for a wide class of sparse sequences which in
particular find applications on additive problems and the discrete
Littlewood problem related to lower bound estimates of the L1-
norm of trigonometric sums.

1. Introduction
Throughout the paper {xn} denotes an increasing sequence of positive

integers. The study of distributional properties of the sequence

xn (mod p); n = 1, 2, . . . ,

and additive problems connected with such sequences are classical ques-
tions in number theory with a variety of results in the literature. When
{xn} grows rapidly the problem becomes harder for individual moduli, but
it is possible to obtain strong results modulo p for most primes p. We men-
tion the work of Banks et al., [1], where a series of results on distribution
of Mersenne numbers Mq = 2q − 1 in residue classes have been obtained.
This question has also been considered by Bourgain in [3]. General results
on the distribution of sequences of type 2xn (mod p), for almost all primes
p, (and generally of the form λxn) have been obtained by Garaev and Sh-
parlinski [10], and by Garaev [8]. For instance, Garaev [8] established a
non-trivial upper bound for the exponential sum

max
(a,p)=1

∣∣∣∣∣∣
∑
n≤T

e
2πia

p
λxn

∣∣∣∣∣∣ ,
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for π(N)(1 + o(1)) primes p ≤ N and T = N(logN)2+ε, where {xn} is any
strictly increasing sequence of positive integers satisfying xn ≤ n15/14+o(1).
Banks et al., [2] obtained uniform distributional properties of the sequences

fλ(n) = λn−1 − 1
n

, hλ(n) = λn−1 − 1
P (n) ,

where λ and n are positive integers, n is composite and P (n) is the largest
prime factor of n.

Now consider a simpler sequence

2n (mod p); n = 1, 2, . . . .

From a result of Erdős and Murty [6] it is well-known that, for π(N)(1 +
o(1)) primes p ≤ N, 2 has multiplicative order tp ≥ N1/2+o(1). Combining
this with a result of Glibichuk [12] it follows that for almost all primes p
every residue class modulo p can be represented in the form

2n1 + · · ·+ 2n8 (mod p),

for certain positive integers n1, . . . , n8.
We remark the work of Schoen and Shkredov [20]. Here, from a more

general result, it follows that for all sufficiently large prime p if R is any
multiplicative subgroup of F∗p satisfying |R| > p1/2, then F∗p ⊆ 6R. As a
direct consequence one has that for most primes p, every nonzero residue
class modulo p can be written as

2n1 + · · ·+ 2n6 (mod p).

In the work [11], the authors applied similar arguments as Erdős and
Murty [6] to obtain analogous results for the sequence of Fibonacci numbers

Fn (mod p); n = 1, 2, . . . ,

where
Fn+2 = Fn+1 + Fn, n ≥ 1,

with F1 = F2 = 1. They proved that for almost all primes p, every residue
class modulo p is a sum of 32 Fibonacci numbers.

In the present paper using a different approach we obtain new results on
additive properties for general sparse sequences for almost all prime moduli.
In particular we prove that for π(N)(1 + o(1)) primes p ≤ N every residue
class is a sum of 16 Fibonacci numbers Fn, with n ≤ N1/2+o(1), improving
upon the mentioned result of [11]. Moreover, we establish that for any ε > 0
there is an integer s = O(1/ε) such that for π(N)(1 + o(1)) primes, p ≤ N,
every residue class can be written as

Fn1 + · · ·+ Fns (mod p),
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with 1 ≤ n1, . . . , ns ≤ N ε. We note that the value s has the optimal order
s = O(1/ε).

Solving the Littlewood conjecture, Konyagin [15], and McGehee, Pigno
and Smith [17] proved that for any finite subset A of integers with T ele-
ments, the following estimate holds

(1.1)
1∫

0

∣∣∣∣∣∑
a∈A

e2πiαa
∣∣∣∣∣ dα� log T.

This bound reflects the best possible lower bound in general settings, as it
shown by the example A = {1, 2, 3, . . . , T}. However for a very wide class
of integer valued sequences xn, estimate (1.1) has been improved, see for
example Garaev [7], Karatsuba [14] and Konyagin [16].

Green and Konyagin [13] established a variant of the Littlewood problem
in prime fields Fp. Theorem 1.2 states that if A is a subset of Fp, with
|A| = (p− 1)/2, then

1
p

p−1∑
x=0

∣∣∣∣∣∑
a∈A

e
2πix

p
a

∣∣∣∣∣� (log p/ log log p)1/3.

In this spirit, combining ideas of Karatsuba [14] and Theorem 2.1, we
improve the mentioned result of [13] for exponential sums involving the
sequence {Fn} of Fibonacci numbers for most primes. More precisely, we
prove that given any positive real γ < 1/3 there are positive constants
c1 = c1(γ), c2 = c2(γ) such that for π(N)(1 + o(1)) primes p ≤ N the
following estimate holds

c1N
γ/2 ≤ 1

p

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣ ≤ c2N
γ/2.

2. Results
Throughout the paper N and M denote sufficiently large integer param-

eters.
The first result of our present paper relies on ideas of arithmetic com-

binatorics and the combination with estimates of rational exponential sum
techniques.

Theorem 2.1. Let ∆ = ∆(N) be a function with ∆(N)→∞, as N →∞.
Let X be any subset of {1, . . . , 10M} such that

|X | ≤ π(N) logM
M∆2 .
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Then for π(N) (1 +O(∆−1)) of primes p ≤ N we have

(2.1) #{x (mod p) : x ∈ X } = |X |
(
1 +O

(
∆−1

))
.

The work of Elsholtz [5] establishes a result of a similar flavour. If A ⊂
[1, x] is a set pf integers with |A| � (log x)r, then

|{a (mod p) : a ∈ A}| � p
r
r+1 ,

for most primes p ≤ (log x)r+1.
Theorem 2.1 allow us to deal with sparse sets. If ∆→∞ as x→∞ and

A ⊂ [1, x] with |A| � (log x)r/∆, then

|{a (mod p) : a ∈ A}| = |A| (1 + o(1)) ,

for most primes p ≤ (log x)r+1.

Theorem 2.1 finds applications to additive problems for well known
rapidly increasing sequences. For example the following theorems on ad-
ditive properties of the Fibonacci sequence {Fn}.

Theorem 2.2. For π(N)(1 + o(1)) primes p ≤ N, every residue class λ
(mod p) can be written as

Fn1 + · · ·+ Fn16 ≡ λ (mod p),

where 1 ≤ n1, . . . , n16 ≤ N1/2+o(1).

Moreover, given ε > 0 it is natural to ask if there exist a fixed integer
s = s(ε), such that for every sufficiently large prime p every residue class
modulo p can be written as

Fn1 + · · ·+ Fns (mod p), with ni ≤ N ε, i = 1, . . . , s.

For similar additive problems see [4], [12] and [21]. Combining Theorem 2.1
with exponential sum techniques (Lemma 3.3) we obtain the following re-
sult.

Theorem 2.3. Let 0 < ε < 1/2. For s = 4([8/ε]−1) and for π(N)(1+o(1))
primes p ≤ N, every residue class λ can be written as

Fn1 + · · ·+ Fns ≡ λ (mod p),

where ni ≤ N ε, i = 1, . . . , s.

Note that s = s(ε) has the expected order O(1/ε).

As we have already mentioned in the Introduction, following ideas of
Karatsuba’s work [14], we obtain another application of Theorem 2.1 .



Distribution of sparse sequences (mod p) and applications 321

Theorem 2.4. Let 0 < γ < 1/3. There are two positive absolute constants
c1 = c1(γ), c2 = c2(γ) such that for π(N)(1 + o(1)) primes, p ≤ N, we have

c1N
γ/2 ≤ 1

p

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣ ≤ c2N
γ/2.

3. Notation and lemmas
For given subsets A and B of Fp and any integer k ≥ 2, as usual, we

denote

A+ B = {a+ b : a ∈ A, b ∈ B},
A · B = {ab : a ∈ A, b ∈ B},
kA = {a1 + . . .+ ak : a1, . . . , ak ∈ A}.

For any finite subset of integers X we denote

X (mod p) = {x (mod p) : x ∈ X}.

The next lemma is a result of Glibichuk [12].

Lemma 3.1. Let A,B be subsets of Fp such that |A||B| > 2p. Then

8A · B = Fp.

Given a fixed prime number p, we denote by tp the multiplicative order
of 2 modulo p. That is

tp = min{` : 2` ≡ 1 (mod p)}.

From [6, Theorem 3], the mentioned work of Erdös–Murty, it follows that for
π(N)(1 + o(1)) primes, p ≤ N, we have tp > p1/2e(log p)ρ0 , for some ρ0 > 0.
Indeed, it is possible to prove that if ρ is any positive function ρ(N) → 0,
as N →∞, then for π(N)(1 + o(1)) primes we have tp > N1/2+ρ. As usual,
we employ the notation No(1) instead Nρ. For a more general results on
this topic see the work [18].

We present an analogous result for the order of appearance, defined by

z(k) = min{` : F` ≡ 0 (mod k)},

where k is a fixed integer k ≥ 2 and Fn denotes the nth term of the sequence
of Fibonacci numbers.

Lemma 3.2. For almost all primes p ≤ N, we have

z(p) ≥ N1/2+o(1).

We require the following lemma which follows from exponential sums
estimates, see for example the proof of [9, Theorem 1.1] or [19].
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Lemma 3.3. Let X,Y and Z be subsets of {0, 1, . . . , p− 1}. Denote by T
the number of solutions of the congruence

(3.1) xy + z1 + z2 ≡ λ (mod p),

where
x ∈ X, y ∈ Y, z1, z2 ∈ Z.

Then, the asymptotic formula

T = |X||Y ||Z|
2

p
+ θ

√
p|X||Y ||Z|, |θ| ≤ 1,

holds uniformly over λ. In particular Eq. (3.1) has a solution if |X||Y ||Z|2 >
p3.

We shall use some results concerning the values of Fibonacci sequence.

Fu+v = 1
2(FuLv + LuFv),(3.2)

Fu−v = (−1)v

2 (FuLv − LuFv),(3.3)

where {Lm} is the Lucas sequence given by

Lm+2 = Lm+1 + Lm, L1 = 1, L2 = 3.

3.1. Proof of Theorem 2.1. In order to establish Theorem 2.1, we need
to introduce an auxiliary lemma. Recall that N,M denote very large integer
parameters and X is any subset of {1, 2, 3, . . . , 10M}. We denote by J (N)
the number of solutions of the congruence

(3.4) x ≡ y (mod p); x, y ∈ X , p ≤ N.

Lemma 3.4. The following asymptotic formula holds

(3.5) J (N) = π(N)|X |+O
(
|X |2M
logM

)
.

Proof. If x = y then Eq. (3.4) has π(N)|X | solutions. Therefore

(3.6) J (N) = π(N)|X |+ J ′,

where J ′ denotes the number of solutions of (3.4) subject to x 6= y. Given
x, y in X with x 6= y, the equation

pk = x− y, p ≤ N,

has at most ω(|x− y|) solutions, where ω(n) denotes the number of prime
divisors of n. If 4 ≤ |x− y| ≤ 10M , using the well-known estimate ω(n)�
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(logn)/(log logn), we obtain that (3.4) has at most O(|X |2M/ logM) so-
lutions. Otherwise, if 0 < |x− y| < 4, then (3.4) has no more than O(|X |)
solutions. Thus

J ′ � |X |2 M

logM .

Inserting this upper bound for J ′ in (3.6), Lemma 3.4 follows. �

Proof. Let Jp be the number of solutions of the congruence

(3.7) x ≡ y (mod p); x, y ∈ X .

Note that Jp ≥ |X |, because the case x = y satisfies (3.7). It is clear that

J (N) =
∑
p≤N

Jp.

Let ∆ be any strictly increasing function ∆ = ∆(N) → ∞ as N → ∞.
Denote by R the set of prime numbers p ≤ N such that

Jp − |X | >
|X |2M

π(N) logM∆.

If p runs through the set R, recalling that Jp − |X | ≥ 0, we get

|R| |X |
2M

π(N) logM∆ ≤
∑
p∈R

(Jp − |X |) ≤
∑
p≤N

(Jp − |X |) = J (N)− π(N)|X |.

Thus, applying Lemma 3.4, we derive that

|R| � π(N)
∆ .

If Q denotes the number of primes p ≤ N such that

Jp − |X | ≤
|X |2M

π(N) logM∆,

then
|Q| = π(N)− |P| = π(N)(1 +O(∆−1)).

Therefore, we obtain the following lemma.

Lemma 3.5. For π(N)(1+O(∆−1)) primes p ≤ N, the asymptotic formula
holds

(3.8) Jp = |X |+O
(
|X |2M

π(N) logM∆
)
.

Now, given λ ∈ {x (mod p) : x ∈ X} denote by J(λ) the number of
solutions of the congruence

x ≡ λ (mod p), x ∈ X .



324 Víctor Cuauhtemoc García

By Cauchy–Schwarz inequality it follows that ∑
λ∈{x (mod p) :x∈X}

J(λ)

2

≤

 ∑
λ∈{x (mod p):x∈X}

1

×
×

 ∑
λ∈{x (mod p) :x∈X}

J2(λ)

 .
Note that

|X | =
∑

λ∈{x (mod p) :x∈X}
J(λ),

Jp =
∑

λ∈{x (mod p) :x∈X}
J2(λ).

Therefore, we have obtained the relation

#{x (mod p) : x ∈ X} ≥ |X |
2

Jp
.

Finally, substituting (3.8) and the assumption

|X | ≤ π(N) logM
M∆2 ,

Theorem 2.1 follows. �

3.2. Proof of Theorem 2.2. Lemma 3.2 allows us to establish the order
of the value set of the Fibonacci sequence for most primes

#{Fn (mod p) : n ≤ δN1/2} � δN1/2,

where δ = δ(N) = No(1) is an increasing function δ → ∞. In order to
establish the last relation, it is sufficient to prove that for

F = {F2n : δN1/2/10 < n ≤ δN1/2/5},
we have

(3.9) |F (mod p)| = |F| = δN1/2

10 +O(1).

Let n, n′ be positive integers such that
(3.10) F2n ≡ F2n′ (mod p); δN1/2/10 < n, n′ ≤ δN1/2/5.
Without loss of generality we can assume that n ≥ n′. Substituting u =
n+ n′ and v = n− n′ in (3.2) and (3.3), we can obtain

F2n − F2n′ = 1
2

(
(1 − (−1)n−n

′
)Fn+n′ Ln−n′ + (1 + (−1)n−n

′
)Ln+n′ Fn−n′

)
.

Suppose that n− n′ ≡ 0 (mod 2), from Eq. (3.10) it follows that
p|Ln+n′Fn−n′ .
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If n 6= n′, then 0 < n − n′ < N1/2δ ≤ z(p), which implies (p, Fn−n′) = 1.
Thus

p|Ln+n′ , in particular p|Fn+n′Ln+n′ ,

where Fn+n′Ln+n′ = F2(n+n′). Hence p|F2(n+n′), with 2(n+n′) < z(p). This
contradicts the choice of z(p). Therefore in the case n − n′ ≡ 0 (mod 2)
Eq. (3.10) has only trivial solutions n = n′. Similarly, it is possible to verify
that (3.10) has no solutions if n− n′ ≡ 1 (mod 2).

Now, consider the subset of the Lucas sequence

L = {L2m : 1 ≤ m ≤ N1/2/
√
δ}.

Taking in Theorem 2.1; M = N1/2/
√
δ and ∆ = δ1/4 we obtain

(3.11) |L (mod p)| = N1/2
√
δ

(1 +O(δ−1/4)).

Observe that equalities (3.9) and (3.11) are valid respectively for most
primes. Thus, for π(N)(1 + o(1)) primes p ≤ N we have

|F (mod p)||L (mod p)| �
√
δN ≥ 2p.

Applying Lemma 3.1, we obtain that for almost all primes p every integer
λ can be written as

F2n1L2m1 + · · ·+ F2n8L2m8 ≡ λ (mod p),
where

N1/2δ/10 < ni ≤ N1/2δ/5, 1 ≤ mi ≤ N1/2/
√
δ, 1 ≤ i ≤ 8.

Using the identity
FuLv = Fu+v + (−1)vFu−v,

for every 1 ≤ i ≤ 8 we get
F2niL2mi = F2(ni+mi) + F2(ni−mi).

Thus, Theorem 2.2 follows. �

3.3. Proof of Theorem 2.3. Let k be the minimal integer such that
1/(k + 2) < ε/8. Define the sets

X = {F2n1−1 + · · ·+ F2nk−1 : 1 ≤ n1, . . . , nk ≤ N
1
k+2 },

Y = {Lm : 1
2N

7
k+2 < m ≤ N

7
k+2 },

Z = {F2`1 + · · ·+ F2`k : 1 ≤ `1, . . . , `k ≤ N
1
k+2 }.

Observe that |Y | � N
7
k+2 and there exists a positive constant c = c(k) < 1

such that
|X|, |Z| ≥ cN

k
k+2 .
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In order to estimate the value set of X (mod p) note that if x ∈ X, then
x ≤ 10(log k)N1/(k+2)

. Thus, applying Theorem 2.1 withM = (log k)N1/(k+2),
X = Z and ∆ = (logN)A, (for any integer A > 0), we have that for most
of primes p ≤ N

|X (mod p)| = |X|(1 + o(1)).
Analogously, we can obtain

|Y (mod p)| = |Y |(1 + o(1)), |Z (mod p)| = |Z|(1 + o(1)),

for almost all primes respectively. Therefore, there is a constant c1 = c1(k),
0 < c1 < 1, such that for π(N)(1 + o(1)) primes p ≤ N we have

|X (mod p)||Y (mod p)||Z (mod p)|2 ≥ c1N
3+ 1

k+2 > p3+ 1
k+2 .

Applying Lemma 3.3 it follows that for almost all primes every integer λ
can be represented as

(3.12)
k∑
i=1

LmF2ni−1 +
k∑
j=1

(F2`j + F2`′j ) ≡ λ (mod p),

where
1
2N

7
k+2 < m ≤ N

7
k+2 , 1 ≤ ni ≤ N

1
k+2 , 1 ≤ `j , `′j ≤ N

1
k+2 , (1 ≤ i, j ≤ k).

We recall the identity

LuFv = Fu+v + (−1)v+1Fu−v.

Thus, for every 1 ≤ i ≤ k in (3.12) we get

LmF2ni−1 = Fm+2ni−1 + Fm−2ni+1.

taking s = 4k (that is, s = 4([8/ε] − 1)), we conclude that for almost all
primes every residue class λ has a representation in the form

Fn1 + · · ·+ Fns ≡ λ (mod p),

for some integers
1 ≤ n1, . . . , ns ≤ N ε. �

3.4. Proof of Theorem 2.4. Observe that the congruence

Fn ≡ Fn′ (mod p); 1 ≤ n, n′ ≤ Nγ ,

has at least Nγ solutions. Therefore

Nγ ≤ 1
p

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣
2

.
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From Hölder’s inequality we obtain

Nγ ≤ 1
p

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣
2/3 ∣∣∣∣∣∣

∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣
4/3

≤ 1
p

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣
2/3

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣
4


1/3

≤ T 1/3
p

1
p

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣
2/3

,(3.13)

where Tp denotes the number of solutions of the congruence
Fn1 + Fn2 ≡ Fm1 + Fm2 (mod p); 1 ≤ n1, n2,m1,m2 ≤ Nγ .

Let
X = {Fn1 + Fn2 : 1 ≤ n1, n2 ≤ Nγ}.

Then |X (mod p)| � N2γ . Applying Lemma 3.5 with M = Nγ and ∆ =
N (1−3γ)/2 we get, for π(N)(1 + o(1)) primes p ≤ N, the estimate

Tp � N2γ
(
1 +N−(1−3γ)/2

)
.

Combining this estimation with relation (3.13) we conclude that there is a
positive constant c1(γ) such that

1
p

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣ ≥ c1(γ)Nγ/2.

Finally, to obtain an upper bound of the same order, using the Cauchy-
Schwarz inequality we have

(3.14)

1
p

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣
2

≤ 1
p

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣
2

,

where the right term is, indeed, the number of solutions of the congruence
Fn ≡ Fm (mod p); 1 ≤ n,m ≤ Nγ .

Applying again Lemma 3.5 with M = Nγ and ∆ = N (1−2γ)/2, we obtain,
for π(N)(1 + o(1)) primes p ≤ N, the estimate

1
p

p−1∑
x=0

∣∣∣∣∣∣
∑
n≤Nγ

e
2πix

p
Fn

∣∣∣∣∣∣
2

≤ Nγ
(
1 +N−(1−2γ)/2

)
≤ c2(γ)Nγ ,

for some positive constant c2(γ). Combining this with (3.14) and taking
the square root we conclude the proof. �



328 Víctor Cuauhtemoc García

Acknowledgement
The author was supported by Grant UAM-A 2232508.

References
[1] W. D. Banks, A. Conflitti, J. B. Friedlander and I. E. Shparlinski, Exponential sums

over Mersenne numbers. Compos. Math. 140 (2004), no. 1, 15–30.
[2] W. D. Banks, M. Z. Garaev, F. Luca and I. E. Shparlinski, Uniform distribution of

fractional parts related to pseudoprimes. Canad. J. Math. 61 (2009), no. 3, 481–502.
[3] J. Bourgain, Estimates on exponential sums related to the Diffie–Hellman distributions.

Geom. Funct. Anal. 15 (2005), no. 1, 1–34.
[4] E. Croot, Sums of the form 1/xk1 + · · · + 1/xkn modulo a prime. Integers 4 (2004), A20,

6 pp.
[5] C. Elsholtz, The distribution of sequences in residue classes. Proc. Amer. Math. Soc. 130

(2002), no. 8, 2247–2250.
[6] P. Erdős and M. R. Murty, On the order of a (mod p). Proc. 5th Canadian Number

Theory Association Conf., Amer. Math. Soc., Providence, RI, 1999, 87–97.
[7] M. Z. Garaev, Upper bounds for the number of solutions of a diophantine equation. Trans.

Amer. Math. Soc. 357 (2005), no. 6, 2527–2534.
[8] M. Z. Garaev, The large sieve inequality for the exponential sequence λ[O(n15/14+o(1))]

modulo primes. Canad. J. Math. 61 (2009), no. 2, 336–350.
[9] M. Z. Garaev and Ka–Lam Kueh, Distribution of special sequences modulo a large prime.

Int. J. Math. Math. Sci. 50 (2003), 3189–3194.
[10] M. Z. Garaev and I. E. Shparlinski, The large sieve inequality with exponential functions

and the distribution of Mersenne numbers modulo primes. Int. Math. Res. Not. 39 (2005),
no. 39, 2391–2408.

[11] V. C. García, F. Luca and V. J. Mejía, On sums of Fibonacci numbers modulo p. Bull.
Aust. Math. Soc. 83 (2011), 413–419.

[12] A. A. Glibichuk, Combinatorial properties of sets of residues modulo a prime and the
Erdős–Graham problem. Mat. Zametki. 79 (2006), no. 3, 384–395; English transl., Math.
Notes. 79 (2006). no. 3–4, 356–365.

[13] B. Green and S. V. Konyagin, On the Littlewood problem modulo a prime. Canad. J.
Math. 61 (2009), no. 1, 141–164.

[14] A. A. Karatsuba, An estimate of the L1-norm of an expontential sum. Math. Notes 64
(1998), no. 3, 401–404.

[15] S. V. Konyagin, On a problem of Littlewood. Izv. Acad. Nauk SSSR Ser. Mat. [Math.
USSR-Izv.] 45 (1981), no. 2, 243–265.

[16] S. V. Konyagin, An estimate of the L1-norm of an exponential sum. The Theory of Approx-
imations of Functions and Operators. Abstracts of Papers of the International Conference
Dedicated to Stechkin’s 80th Anniversary [in Russian]. Ekaterinburg, 2000, pp. 88-89.

[17] O. C. McGehee, L. Pigno and B. Smith, Hardy’s inequality and the L1 norm of exponen-
tial sums. Ann. of Math. (2) 113 (1981), no. 3, 613–618.

[18] F. Pappalardi, On the order of finitely generated subgroups of Q∗ (mod p) and divisors of
p− 1. J. Number Theory 57 (1996), 207–222.

[19] A. Sárközy, On sums and products of residues modulo p. Acta Arith. 118 (2005), no. 4,
403–409.

[20] T. Schoen and I. Shkredov, Additive properties of multiplicative subgroups of Fp. Quart.
J. Math. 63 (2012), no. 3, 713–722.

[21] I. E. Shplarlinski, On a question of Erdős and Graham. Arch. Math. 78 (2002), 445–448.



Distribution of sparse sequences (mod p) and applications 329

Víctor Cuauhtemoc García
Departamento de Ciencias Básicas
Universidad Autónoma Metropolitana–Azcapotzalco
C.P. 02200, México D.F., México
E-mail: vc.garci@gmail.com

mailto:vc.garci@gmail.com

	1. Introduction
	2. Results
	3. Notation and lemmas
	3.1. Proof of Theorem 2.1
	3.2. Proof of Theorem 2.2
	3.3. Proof of Theorem 2.3
	3.4. Proof of Theorem 2.4

	Acknowledgement
	References

