On metacyclic extensions
Journal de Théorie des Nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 339-353.

Nous construisons des extensions galoisiennes de groupes de Galois métacycliques variés au moyen d’une théorie de Kummer émanant d’une isogénie de certains tores algébriques. En particulier, notre méthode nous permet de construire des tores algébriques paramétrant des extensions métacycliques.

Galois extensions with various metacyclic Galois groups are constructed by means of a Kummer theory arising from an isogeny of certain algebraic tori. In particular, our method enables us to construct algebraic tori parameterizing metacyclic extensions.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.799
@article{JTNB_2012__24_2_339_0,
     author = {Masanari Kida},
     title = {On metacyclic extensions},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {339--353},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {24},
     number = {2},
     year = {2012},
     doi = {10.5802/jtnb.799},
     zbl = {1280.11066},
     mrnumber = {2950695},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.799/}
}
Masanari Kida. On metacyclic extensions. Journal de Théorie des Nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 339-353. doi : 10.5802/jtnb.799. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.799/

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). | MR 1484478 | Zbl 0898.68039

[2] H. Cohen, Advanced topics in computational number theory. Springer-Verlag, New York, 2000. | MR 1728313

[3] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, Vol. XI. Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. | MR 144979 | Zbl 0131.25601

[4] M. Hall, Jr., The theory of groups. Chelsea Publishing Co., New York, 1976. | MR 414669 | Zbl 0354.20001

[5] K. Hashimoto and K. Miyake, Inverse Galois problem for dihedral groups. Number theory and its applications (Kyoto, 1997), Dev. Math., vol. 2, 165–181. Kluwer Acad. Publ., Dordrecht, 1999. | MR 1738815 | Zbl 0965.12004

[6] M. Imaoka and Y. Kishi, On dihedral extensions and Frobenius extensions. Galois theory and modular forms, Dev. Math., vol. 11, 195–220. Kluwer Acad. Publ., Boston, MA, 2004. | MR 2059764

[7] C. U. Jensen, A. Ledet, and N. Yui, Generic polynomials. Mathematical Sciences Research Institute Publications, vol. 45. Cambridge University Press, Cambridge, 2002. | MR 1969648

[8] M. Kida, Galois descent and twists of an abelian variety. Acta Arith. 73 (1995), no. 1, 51–57. | MR 1358187 | Zbl 0858.11031

[9] , Cyclic polynomials arising from Kummer theory of norm algebraic tori. Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, 102–113. Springer, Berlin, 2006. | MR 2282918

[10] , Descent Kummer theory via Weil restriction of multiplicative groups. J. Number Theory 130 (2010), 639–659. | MR 2584846

[11] , A Kummer theoretic construction of an S 3 -polynomial with given quadratic subfield. Interdisciplinary Information Sciences 16 (2010), 17–20. | MR 2648111

[12] M. Kida, Y. Rikuna, and A. Sato, Classifying Brumer’s quintic polynomials by weak Mordell-Weil groups. Int. J. Number Theory 6 (2010), 691–704. | MR 2652903

[13] O. Lecacheux, Constructions de polynômes génériques à groupe de Galois résoluble. Acta Arith. 86 (1998), no. 3, 207–216. | MR 1655979 | Zbl 0919.12002

[14] S. Nakano and M. Sase, A note on the construction of metacyclic extensions. Tokyo J. Math. 25 (2002), no. 1, 197–203. | MR 1908223

[15] V. E. Voskresenskiĭ, Algebraic groups and their birational invariants. Translations of Mathematical Monographs, vol. 179. American Mathematical Society, Providence, RI, 1998. | MR 1634406 | Zbl 0974.14034