On the number of places of convergence for Newton’s method over number fields
Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 2, pp. 387-401.

Soit f un polynôme de degré au moins 2 avec coefficients dans un corps de nombres K, soit x 0 un élément suffisamment général de K, et soit α une racine de f. Nous précisons des conditions pour lesquelles l’itération de Newton, commençant au point x 0 , converge v-adiquement vers la racine α pour un nombre infini de places v de K. Comme corollaire, nous montrons que si f est irréductible sur K de degré au moins 3, l’itération de Newton converge v-adiquement vers chaque racine de f pour un nombre infini de places v de K. Nous faisons aussi la conjecture que le nombre de places telles que l’itération de Newton ne converge pas a densité un et nous donnons des évidences heuristiques et numériques.

Let f be a polynomial of degree at least 2 with coefficients in a number field K, let x 0 be a sufficiently general element of K, and let α be a root of f. We give precise conditions under which Newton iteration, started at the point x 0 , converges v-adically to the root α for infinitely many places v of K. As a corollary we show that if f is irreducible over K of degree at least 3, then Newton iteration converges v-adically to any given root of f for infinitely many places v. We also conjecture that the set of places for which Newton iteration diverges has full density and give some heuristic and numerical evidence.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.768
Classification : 37P05,  11B99
Mots clés : Arithmetic Dynamics, Newton’s Method, Primitive Prime Factors
@article{JTNB_2011__23_2_387_0,
     author = {Xander Faber and Jos\'e Felipe Voloch},
     title = {On the number of places of convergence for {Newton{\textquoteright}s} method over number fields},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {387--401},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {2},
     year = {2011},
     doi = {10.5802/jtnb.768},
     mrnumber = {2817936},
     zbl = {1223.37118},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.768/}
}
Xander Faber; José Felipe Voloch. On the number of places of convergence for Newton’s method over number fields. Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 2, pp. 387-401. doi : 10.5802/jtnb.768. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.768/

[1] Xander Faber and Andrew Granville Prime factors of dynamical sequences. To appear in J. Reine Angew. Math. ArXiv:0903.1344v1. | Zbl 1290.11019

[2] Patrick Ingram and Joseph H. Silverman, Primitive divisors in arithmetic dynamics. Math. Proc. Cambridge Philos. Soc. 146(2) (2009), 289–302. | MR 2475968 | Zbl pre05532375

[3] Alain M. Robert, A course in p-adic analysis. Volume 198 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. | MR 1760253 | Zbl 0947.11035

[4] Joseph H. Silverman and José Felipe Voloch, A local-global criterion for dynamics on 1 . Acta Arith. 137(3) (2009), 285–294. | EuDML 278146 | MR 2496466 | Zbl pre05538712