The well-known Wolstenholme’s Theorem says that for every prime the -st partial sum of the harmonic series is congruent to modulo . If one replaces the harmonic series by for even, then the modulus has to be changed from to just . One may consider generalizations of this to multiple harmonic sums (MHS) and alternating multiple harmonic sums (AMHS) which are partial sums of multiple zeta value series and the alternating Euler sums, respectively. A lot of results along this direction have been obtained in the recent articles [6, 7, 8, 10, 11, 12], which we shall summarize in this paper. It turns out that for a prime the -st sum of the general MHS and AMHS modulo is not congruent to anymore; however, it often can be expressed by Bernoulli numbers. So it is a quite interesting problem to find out exactly what they are. In this paper we will provide a theoretical framework in which this kind of results can be organized and further investigated. We shall also compute some more MHS modulo a prime when the weight is less than .
Le théorème bien connu de Wolstenholme affirme que, pour tout premier , la -ième somme partielle de la série harmonique est congrue à modulo . Si on remplace la série harmonique par pour pair alors la congruence est vraie seulement modulo au lieu de modulo On peut considérer des généralisations aux sommes harmoniques multiples (SHM) et aux aux sommes harmoniques multiples alternées (SHMA) qui sont des sommes partielles de séries zêta multiples et, respectivement, de sommes d’Euler alternées. Beaucoup de résultats dans cette direction ont été obtenus dans les articles récents [6, 7, 8, 10, 11, 12], que nous récapitulerons dans ce papier. Il apparait que, pour un premier , la -ième somme partielle d’une SHM ou SHMA générale n’est plus congrue à modulo ; cependant elle peut souvent être exprimée en terme de nombres de Bernoulli. Donc c’est un problème assez intéressant de trouver qui ils sont. Dans cet article, nous fournirons un cadre théorique dans lequel ce genre de résulats peut s’exprimer et être étudié plus longuement. Nous calculerons aussi quelques SHM supplémentaires modulo un premier quand le poids est inférieur à .
Keywords: Multiple harmonic sums, alternating multiple harmonic sums, duality, shuffle relations.
@article{JTNB_2011__23_1_299_0, author = {Jianqiang Zhao}, title = {Mod $p$ structure of alternating and non-alternating multiple harmonic sums}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {299--308}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {1}, year = {2011}, doi = {10.5802/jtnb.762}, mrnumber = {2780631}, zbl = {1269.11086}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.762/} }
TY - JOUR AU - Jianqiang Zhao TI - Mod $p$ structure of alternating and non-alternating multiple harmonic sums JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 299 EP - 308 VL - 23 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.762/ DO - 10.5802/jtnb.762 LA - en ID - JTNB_2011__23_1_299_0 ER -
%0 Journal Article %A Jianqiang Zhao %T Mod $p$ structure of alternating and non-alternating multiple harmonic sums %J Journal de théorie des nombres de Bordeaux %D 2011 %P 299-308 %V 23 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.762/ %R 10.5802/jtnb.762 %G en %F JTNB_2011__23_1_299_0
Jianqiang Zhao. Mod $p$ structure of alternating and non-alternating multiple harmonic sums. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 1, pp. 299-308. doi : 10.5802/jtnb.762. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.762/
[1] J. Blümlein, Algebraic relations between harmonic sums and associated quantities. Comput. Phys. Commun. 159 (2004), 19–54. arXiv: hep-ph/0311046. | MR | Zbl
[2] J. Blümlein and S. Kurth, Harmonic sums and Mellin transforms up to two-loop order. Phys. Rev. D 60 (1999), art. 01418. arXiv: hep-ph/9810241.
[3] M.E. Hoffman, The Hopf algebra structure of multiple harmonic sums. Nuclear Phys. B (Proc. Suppl.) 135 (2004), 214–219. arXiv: math.QA/0406589. | MR
[4] M.E. Hoffman, Quasi-Shuffle Products. J. Algebraic Combin. 11 (2000), 49–68. | MR | Zbl
[5] M.E. Hoffman, Algebraic aspects of multiple zeta values. In: Zeta Functions, Topology and Quantum Physics, Developments in Mathematics 14, T. Aoki et. al. (eds.), Springer, 2005, New York, pp. 51–74. arXiv: math.QA/0309425. | MR | Zbl
[6] M.E. Hoffman, Quasi-symmetric functions and mod multiple harmonic sums. arXiv: math.NT/0401319
[7] R. Tauraso, Congruences involving alternating multiple harmonic sum. Elec. J. Combinatorics, 17(1) (2010), R16. | MR
[8] R. Tauraso and J. Zhao, Congruences of alternating multiple harmonic sums. In press: J. Comb. and Number Theory. arXiv: math/0909.0670
[9] J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals. Int. J. Modern Phys. A 14 (1999), 2037–2076. arXiv: hep-ph/9806280. | MR | Zbl
[10] J. Zhao, Wolstenholme type Theorem for multiple harmonic sums. Intl. J. of Number Theory, 4(1) (2008), 73–106. arXiv: math/0301252. | MR | Zbl
[11] J. Zhao, Finiteness of -divisible sets of multiple harmonic sums. In press: Annales des Sciences Mathématiques du Québec. arXiv: math/0303043. | MR | Zbl
[12] X. Zhou and T. Cai, A generalization of a curious congruence on harmonic sums. Proc. Amer. Math. Soc. 135 (2007), 1329-1333 | MR | Zbl
Cited by Sources: