The catenary degree of Krull monoids I
Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 1, pp. 137-169.

Soit H un monoïde de Krull de groupe de classes G fini. On suppose que chaque classe contient un diviseur premier (par exemple, l’anneau des entiers d’un corps de nombres ou l’anneau d’holomorphie d’un corps de fonctions). Le degré de chaînage c(H) de H est le plus petit entier N ayant la propriété suivante : pour tout aH et toute paire de factorisations z,z de l’élément a, il existe des factorisations z=z 0 ,...,z k =z de a telles que, pour chaque i[1,k], on puisse obtenir z i à partir de z i-1 en modifiant au plus N atomes. Dans cet article, nous obtenons une nouvelle caractérisation du degré de chaînage pour les H dont la constante de Davenport du groupe de classes vérifie une certaine hypothèse très peu restrictive. Cette caractérisation offre un nouveau point de vue, plus structurel, sur la notion de degré de chaînage. En particulier, elle clarifie la relation entre c(H) et l’ensemble des distances de H et permet d’envisager l’obtention de résultats plus précis sur le degré de chaînage. Nous illustrons ce phénomène en donnant deux applications : une nouvelle borne supérieure pour c(H) et la caractérisation des H tels que c(H)4.

Let H be a Krull monoid with finite class group G such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree c(H) of H is the smallest integer N with the following property: for each aH and each two factorizations z,z of a, there exist factorizations z=z 0 ,...,z k =z of a such that, for each i[1,k], z i arises from z i-1 by replacing at most N atoms from z i-1 by at most N new atoms. Under a very mild condition on the Davenport constant of G, we establish a new and simple characterization of the catenary degree. This characterization gives a new structural understanding of the catenary degree. In particular, it clarifies the relationship between c(H) and the set of distances of H and opens the way towards obtaining more detailed results on the catenary degree. As first applications, we give a new upper bound on c(H) and characterize when c(H)4.

Publié le :
DOI : https://doi.org/10.5802/jtnb.754
Classification : 11R27,  13F05,  20M13
Mots clés : non-unique factorizations, Krull monoids, catenary degree, zero-sum sequence
@article{JTNB_2011__23_1_137_0,
     author = {Alfred Geroldinger and David J. Grynkiewicz and Wolfgang A. Schmid},
     title = {The catenary degree of {Krull} monoids {I}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {137--169},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {1},
     year = {2011},
     doi = {10.5802/jtnb.754},
     zbl = {1253.11101},
     mrnumber = {2780623},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.754/}
}
Alfred Geroldinger; David J. Grynkiewicz; Wolfgang A. Schmid. The catenary degree of Krull monoids I. Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 1, pp. 137-169. doi : 10.5802/jtnb.754. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.754/

[1] J. Amos, S.T. Chapman, N. Hine, and J. Paixao, Sets of lengths do not characterize numerical monoids. Integers 7 (2007), Paper A50, 8p. | MR 2373112 | Zbl 1139.20056

[2] D.D. Anderson, S.T. Chapman, F. Halter-Koch, and M. Zafrullah, Criteria for unique factorization in integral domains. J. Pure Appl. Algebra 127 (1998), 205–218. | MR 1617195 | Zbl 0949.13015

[3] P. Baginski, S.T. Chapman, R. Rodriguez, G.J. Schaeffer, and Y. She, On the delta set and catenary degree of Krull monoids with infinite cyclic divisor class group. J. Pure Appl. Algebra 214 (2010), 1334 – 1339. | MR 2593666 | Zbl 1193.20071

[4] G. Bhowmik and J.-C. Schlage-Puchta, Davenport’s constant for groups of the form 3 3 3d . Additive Combinatorics (A. Granville, M.B. Nathanson, and J. Solymosi, eds.), CRM Proceedings and Lecture Notes, vol. 43, American Mathematical Society, 2007, pp. 307–326. | MR 2359480 | Zbl 1173.11012

[5] C. Bowles, S.T. Chapman, N. Kaplan, and D. Reiser, On delta sets of numerical monoids. J. Algebra Appl. 5 (2006), 695–718. | MR 2269412 | Zbl 1115.20052

[6] S.T. Chapman, J. Daigle, R. Hoyer, and N. Kaplan, Delta sets of numerical monoids using nonminimal sets of generators. Commun. Algebra 38 (2010), 2622–2634. | MR 2674690 | Zbl pre05768526

[7] S.T. Chapman, P.A. García-Sánchez, and D. Llena, The catenary and tame degree of numerical monoids. Forum Math. 21 (2009), 117 – 129. | MR 2494887 | Zbl 1177.20070

[8] S.T. Chapman, P.A. García-Sánchez, D. Llena, and J. Marshall, Elements in a numerical semigroup with factorizations of the same length. Can. Math. Bull. 54 (2010), 39–43.

[9] S.T. Chapman, P.A. García-Sánchez, D. Llena, V. Ponomarenko, and J.C. Rosales, The catenary and tame degree in finitely generated commutative cancellative monoids. Manuscr. Math. 120 (2006), 253–264. | MR 2243561 | Zbl 1117.20045

[10] S.T. Chapman, R. Hoyer, and N. Kaplan, Delta sets of numerical monoids are eventually periodic. Aequationes Math. 77 (2009), 273–279. | MR 2520501 | Zbl 1204.20078

[11] Y. Edel, Sequences in abelian groups G of odd order without zero-sum subsequences of length exp (G). Des. Codes Cryptography 47 (2008), 125–134. | MR 2375461 | Zbl 1196.11043

[12] Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin, and L. Rackham, Zero-sum problems in finite abelian groups and affine caps. Quarterly. J. Math., Oxford II. Ser. 58 (2007), 159–186. | MR 2334860 | Zbl pre05190260

[13] Y. Edel, S. Ferret, I. Landjev, and L. Storme, The classification of the largest caps in AG(5,3). J. Comb. Theory, Ser. A 99 (2002), 95 –110. | MR 1911459 | Zbl 1023.51007

[14] M. Freeze and W.A. Schmid, Remarks on a generalization of the Davenport constant. Discrete Math. 310 (2010), 3373–3389. | MR 2721098 | Zbl pre05807514

[15] W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups. Period. Math. Hung. 38 (1999), 179–211. | MR 1756238 | Zbl 0980.11014

[16] , Zero-sum problems in finite abelian groups : a survey. Expo. Math. 24 (2006), 337–369. | MR 2313123 | Zbl 1122.11013

[17] A. Geroldinger, Additive group theory and non-unique factorizations. Combinatorial Number Theory and Additive Group Theory (A. Geroldinger and I. Ruzsa, eds.), Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1–86. | MR 2522037 | Zbl pre05663737

[18] A. Geroldinger, D.J. Grynkiewicz, and W.A. Schmid, The catenary degree of Krull monoids II. manuscript.

[19] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics, vol. 278, Chapman & Hall/CRC, 2006. | MR 2194494 | Zbl 1113.11002

[20] A. Geroldinger and W. Hassler, Arithmetic of Mori domains and monoids. J. Algebra 319 (2008), 3419–3463. | MR 2408326 | Zbl 1195.13022

[21] A. Geroldinger and J. Kaczorowski, Analytic and arithmetic theory of semigroups with divisor theory. J. Théor. Nombres Bordx. 4 (1992), 199–238. | EuDML 93561 | Numdam | MR 1208863 | Zbl 0780.11046

[22] A. Geroldinger and R. Schneider, On Davenport’s constant. J. Comb. Theory, Ser. A 61 (1992), 147–152. | MR 1178393 | Zbl 0759.20008

[23] R. Gilmer, Commutative Semigroup Rings. The University of Chicago Press, 1984. | MR 741678 | Zbl 0566.20050

[24] P.A. Grillet, Commutative Semigroups. Kluwer Academic Publishers, 2001. | MR 2017849 | Zbl 1040.20048

[25] F. Halter-Koch, Ideal Systems. An Introduction to Multiplicative Ideal Theory. Marcel Dekker, 1998. | MR 1828371 | Zbl 0953.13001

[26] A. Iwaszkiewicz-Rudoszanska, On the distribution of coefficients of logarithmic derivatives of L-functions attached to certain arithmetical semigroups. Monatsh. Math. 127 (1999), 189–202. | MR 1680523 | Zbl 0940.11040

[27] , On the distribution of prime divisors in arithmetical semigroups. Funct. Approximatio, Comment. Math. 27 (1999), 109 – 116. | MR 1746844 | Zbl 0964.11036

[28] H. Kim, The distribution of prime divisors in Krull monoid domains. J. Pure Appl. Algebra 155 (2001), 203–210. | MR 1801415 | Zbl 0971.13015

[29] H. Kim and Y. S. Park, Krull domains of generalized power series. J. Algebra 237 (2001), 292–301. | MR 1813891 | Zbl 1039.13012

[30] C.R. Leedham-Green, The class group of Dedekind domains. Trans. Am. Math. Soc. 163 (1972), 493–500. | MR 292806 | Zbl 0231.13008

[31] M. Omidali, The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences. Forum Math., to appear. | MR 2494887 | Zbl 1252.20057

[32] O. Ordaz, A. Philipp, I. Santos, and W.A. Schmid, On the Olson and the strong Davenport constants. J. Théor. Nombres Bordx., to appear. | EuDML 219794 | Zbl 1252.11011

[33] A. Potechin, Maximal caps in AG (6,3). Des. Codes Cryptography 46 (2008), 243–259. | MR 2372838 | Zbl 1187.51010

[34] J.C. Rosales and P.A. García-Sánchez, Numerical Semigroups. Springer, 2009. | MR 2549780 | Zbl pre05623301

[35] W.A. Schmid, A realization theorem for sets of lengths. J. Number Theory 129 (2009), 990–999. | MR 2516967 | Zbl 1191.11031