L’hyperanneau des classes d’adèles
[The hyperring of adèle classes]
Journal de Théorie des Nombres de Bordeaux, Volume 23 (2011) no. 1, pp. 71-93.

I present here some recent results (obtained in collaboration with C. Consani [3], [4], [5], [6]) about the “characteristic 1” limit case. The main goal is to prove that the adèle class space of a global field, which, up to now, has only been considered as a non-commutative space, has in fact a natural algebraic structure. We will also see that the construction of the Witt ring in characteristic p>1 has a characteristic 1 analogue and that the deformation of the additive structure implies, in a crucial manner, the entropy function.

J’exposerai ici quelques résultats récents (obtenus en collaboration avec C. Consani [3], [4], [5], [6]) qui portent sur le cas limite de la “caractéristique 1”. Le but principal est de montrer que l’espace des classes d’adèles d’un corps global, qui jusqu’à présent n’a été considéré que comme un espace (non-commutatif), admet en fait une structure algébrique naturelle. Nous verrons également que la construction de l’anneau de Witt d’un anneau de caractéristique p>1 admet un analogue en caractéristique 1 et que la déformation de la structure additive implique de manière cruciale l’entropie.

Published online:
DOI: 10.5802/jtnb.751
Alain Connes 1

1 Collège de France 3, rue d’Ulm Paris, F-75005 France I.H.E.S. and Vanderbilt University
@article{JTNB_2011__23_1_71_0,
     author = {Alain Connes},
     title = {L{\textquoteright}hyperanneau des classes d{\textquoteright}ad\`eles},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {71--93},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {1},
     year = {2011},
     doi = {10.5802/jtnb.751},
     zbl = {1277.11091},
     mrnumber = {2780620},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.751/}
}
TY  - JOUR
TI  - L’hyperanneau des classes d’adèles
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2011
DA  - 2011///
SP  - 71
EP  - 93
VL  - 23
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.751/
UR  - https://zbmath.org/?q=an%3A1277.11091
UR  - https://www.ams.org/mathscinet-getitem?mr=2780620
UR  - https://doi.org/10.5802/jtnb.751
DO  - 10.5802/jtnb.751
LA  - fr
ID  - JTNB_2011__23_1_71_0
ER  - 
%0 Journal Article
%T L’hyperanneau des classes d’adèles
%J Journal de Théorie des Nombres de Bordeaux
%D 2011
%P 71-93
%V 23
%N 1
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.751
%R 10.5802/jtnb.751
%G fr
%F JTNB_2011__23_1_71_0
Alain Connes. L’hyperanneau des classes d’adèles. Journal de Théorie des Nombres de Bordeaux, Volume 23 (2011) no. 1, pp. 71-93. doi : 10.5802/jtnb.751. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.751/

[1] J.B. Bost, A. Connes, Hecke algebras, Type III factors and phase transitions with spontaneous symmetry breaking in number theory. Selecta Math. (New Series) Vol. 1 (1995) N. 3, 411–457. | MR: 1366621 | Zbl: 0842.46040

[2] A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Selecta Math. (N.S.) 5 (1999), no. 1, 29–106. | MR: 1694895 | Zbl: 0945.11015

[3] A. Connes, C. Consani, On the notion of geometry over 𝔽 1 . To appear in Journal of Algebraic Geometry ; arXiv08092926v2 [mathAG].

[4] A. Connes, C. Consani, Schemes over 𝔽 1 and zeta functions. To appear in Compositio Mathematica ; arXiv :0903.2024v3 [mathAG,NT]. | Zbl: 1201.14001

[5] A. Connes, C. Consani, Characteristic 1, entropy and the absolute point. ArXiv :0911.3537v1 [mathAG].

[6] A. Connes, C. Consani, The hyperring of adèle classes. ArXiv :1001.4260v2 [mathAG]. | MR: 2736850

[7] A. Connes, C. Consani, M. Marcolli, Noncommutative geometry and motives : the thermodynamics of endomotives. Advances in Math. 214 (2) (2007), 761–831. | MR: 2349719 | Zbl: 1125.14001

[8] A. Connes, C. Consani, M. Marcolli, The Weil proof and the geometry of the adeles class space. To appear in “Algebra, Arithmetic and Geometry – Manin Festschrift”, Progress in Mathematics, Birkhäuser (2008) ; arXiv0703392. | MR: 2641176 | Zbl: pre05790987

[9] A. Connes, C. Consani, M. Marcolli, Fun with 𝔽 1 . Journal of Number Theory 129 (2009), 1532–1561. | MR: 2521492 | Zbl: pre05559098

[10] A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields, and Motives. Colloquium Publications, Vol. 55, American Mathematical Society, 2008. | MR: 2371808 | Zbl: pre05231452

[11] P. Corsini, V. Leoreanu, Applications of hyperstructure theory. Advances in Mathematics (Dordrecht) 5, Kluwer Academic Publishers, Dordrecht, 2003. | MR: 1980853 | Zbl: 1027.20051

[12] A. Deitmar, Schemes over F1. In Number Fields and Function Fields Two Parallel Worlds. Ed. by G. van der Geer, B. Moonen, R. Schoof, Progr. in Math, vol. 239, 2005. | MR: 2176588 | Zbl: 1098.14003

[13] M. Demazure, P. Gabriel, Groupes algébriques. Masson & CIE, Éditeur Paris 1970. | MR: 302656

[14] E. Ellers, H. Karzel, Involutorische Geometrien, (German). Abh. Math. Sem. Univ. Hamburg 25 (1961), 93–104. | MR: 143074 | Zbl: 0100.15801

[15] A. Gathmann, Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein. 108 (2006), no. 1, 3–32. | MR: 2219706 | Zbl: 1109.14038

[16] J. Golan, semi-rings and their applications. Updated and expanded version of The theory of semi-rings, with applications to mathematics and theoretical computer science [Longman Sci. Tech., Harlow, 1992]. Kluwer Academic Publishers, Dordrecht, 1999. | MR: 1746739

[17] A. Grothendieck, Sur quelques points d’algèbre homologique. Tohoku Math. J. 9 (1957), 119–183. | MR: 102537 | Zbl: 0118.26104

[18] M. Hall, Cyclic projective planes. Duke Math. J. 14 (1947), 1079–1090. | MR: 23536 | Zbl: 0029.22502

[19] M. Kapranov and A. Smirnov, Cohomology determinants and reciprocity laws. Prepublication.

[20] H. Karzel, Ebene Inzidenzgruppen (German). Arch. Math. (Basel) 15 (1964), 10–17. | MR: 161215 | Zbl: 0116.12701

[21] H. Karzel, Normale Fastkörper mit kommutativer Inzidenzgruppe (German). Abh. Math. Sem. Univ. Hamburg 28 (1965), 124–132. | MR: 172898 | Zbl: 0128.02506

[22] H. Karzel, Bericht über projektive Inzidenzgruppen (German). Jahresber. Deutsch. Math.-Verein. 67 (1964/1965) Abt. 1, 58–92. | MR: 175014 | Zbl: 0131.19101

[23] M. Krasner, Approximation des corps valués complets de caractéristique p0 par ceux de caractéristique 0 (French). Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, pp. 129–206. Centre Belge de Recherches Mathématiques, Établissements Ceuterick, Louvain ; Librairie Gauthier-Villars, Paris, 1957. | MR: 106218 | Zbl: 0085.26501

[24] M. Krasner, A class of hyperrings and hyperfields. Internat. J. Math. Math. Sci. 6 (1983), no. 2, 307–311. | MR: 701303 | Zbl: 0516.16030

[25] N. Kurokawa, H. Ochiai, A. Wakayama, Absolute Derivations and Zeta Functions. Documenta Math. Extra Volume : Kazuya Kato’s Fiftieth Birthday (2003), 565–584. | MR: 2046608 | Zbl: 1101.11325

[26] P. Lescot, Algèbre absolue. Ann. Sci. Math. Québec 33 (2009), no. 1, 63–82. | MR: 2729820 | Zbl: pre05831755

[27] J. Lopez Pena, O. Lorscheid, Mapping 𝔽 1 -land : An overview of geometries over the field with one element. ArXiv :0909.0069.

[28] Lyndon, R. C., Relation algebras and projective geometries. Michigan Math. J. 8 (1961), 21–28. | MR: 122743 | Zbl: 0105.25303

[29] Y. I. Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa). Columbia University Number-Theory Seminar (1992), Astérisque No. 228 (1995), 4, 121–163. | MR: 1330931 | Zbl: 0840.14001

[30] F. Marty, Sur une généralisation de la notion de groupe. In Huitième Congrès des Mathématiciens, Stockholm 1934, 45–59.

[31] R. Meyer, On a representation of the idele class group related to primes and zeros of L-functions. Duke Math. J. Vol. 127 (2005), N. 3, 519–595. | MR: 2132868 | Zbl: 1079.11044

[32] R. Procesi–Ciampi, R. Rota, The hyperring spectrum. Riv. Mat. Pura Appl. No. 1 (1987), 71–80. | MR: 908246 | Zbl: 0622.16021

[33] C. Soulé, Les variétés sur le corps à un élément. Mosc. Math. J. 4 (2004), no. 1, 217–244. | MR: 2074990 | Zbl: 1103.14003

[34] B. Töen, M. Vaquié, Au dessous de Spec(). K-Theory 3 (2009), no. 3, 437–500. | MR: 2507727 | Zbl: 1177.14022

[35] O. Viro Multifields for tropical geometry I. multifields and dequantization. ArXiv1006.3034v1.

[36] A. Weil, Sur la théorie du corps de classes. J. math. Soc. Japan 3 (1951), 1–35. | MR: 44569 | Zbl: 0044.02901

Cited by Sources: