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Small generators of function fields

par Martin WIDMER

Résumé. Soit K/k une extension finie d’un corps global, donc K
contient un élément primitif α, c’est à dire K = k(α). Dans cet
article, nous démontrons l’existence d’un élément primitif de pe-
tite hauteur dans le cas d’un corps de fonctions. Notre résultat est
la réponse pour les corps de fonctions à une question de Ruppert
sur les petits générateurs des corps de nombres.

Abstract. Let K/k be a finite extension of a global field. Such
an extension can be generated over k by a single element. The aim
of this article is to prove the existence of a ”small” generator in
the function field case. This answers the function field version of
a question of Ruppert on small generators of number fields.

1. Introduction
Let K be a finite extension of a global field k where global field means

finite extension of either Q or of a rational function field of transcendence
degree one over a finite field. Such an extension is generated by a single
element, and there exists a natural concept of size onK given by the height.
The well-known Theorem of Northcott (originally proved for algebraic num-
bers but easily seen to hold also in positive characteristic) implies that for
each real T there are only finitely many α ∈ K whose height does not exceed
T . In particular there exists a smallest generator. It is therefore natural to
ask for lower and upper bounds for the height of a smallest generator. We
emphasize the situation where d is fixed and K runs over all extensions of
k of degree d.

Several people proved lower bounds for generators; first Mahler [5] for
the ground field k = Q and then Silverman [8] for arbitrary ground fields
(and also higher dimensions) but see also [7], [6] and [4] for simpler results.
For an extension K/k of number fields Silverman’s inequality implies

(1.1) h(1, α) ≥ log |∆K |/(2d(d− 1))− log |∆k|/(2(d− 1))
− [k : Q] log d/(2(d− 1))

for any generator α ofK/k. As shown by examples of Masser (Proposition 1
[6]) and Ruppert [7], this bound is sharp, at least up to an additive constant
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depending only on k and d. A version of Silverman’s bound in the function
field case follows quickly from Castelnuovo’s inequality. For simplicity let us
temporarily assume K and k are finite separable extensions of the rational
function field Fq(t) both with field of constants Fq. We apply Castelnuovo’s
inequality as in [9] III.10.3.Theorem with F = K = k(α), F1 = k and
F2 = Fq(α). Writing gk and gK for the genus of k and K we conclude
[K : Fq(α)] ≥ gK/(d − 1) − dgk/(d − 1) + 1. From (2.1), (2.2) and the
definition of the height in (2.3) we easily deduce h(1, α) ≥ [K : Fq(α)]/d,
and thus

h(1, α) ≥ gK/(d(d− 1))− gk/(d− 1) + 1/d.(1.2)

The discriminant ∆K = qdegDiff(K/Fq(t)) of K/Fq(t) is related to the genus
by the Riemann-Hurwitz formula, more precisely ∆K = q2gK+2([K:Fq(t)]−1).
Thus (1.2) matches with (1.1), at least up to an additive constant depending
only on the degrees of k and K. A similar inequality as in (1.2) was given
by Thunder ([10] Lemma 6).

What about upper bounds for the smallest generator? It seems that
this problem has not been studied much yet. However, at least for number
fields the problem has been proposed explicitly by Ruppert. More precisely
Ruppert ([7] Question 2) addressed the following question.

Question 1 (Ruppert, 1998). Does there exist a constant C = C(d) such
that for each number field K of degree d there exists a generator α of the
extension K/Q with h(1, α) ≤ log |∆K |/(2d) + C?

Ruppert used the non-logarithmic naive height whereas we use the log-
arithmic projective absolute Weil height as defined in [2]. However, it is
easily seen that the question formulated here is equivalent to Ruppert’s
Question 2 in [7]. One can show that there exists always an integral gen-
erator α of K/Q with h(1, α) ≤ log |∆K |/d. For a proof of this simple fact
see [11]. What is more Ruppert showed that Question 1 has an affirmative
answer for K either quadratic or a totally real field of prime degree. In
fact, using Minkowski’s convex body Theorem to construct a Pisot-number
generator, it suffices to assume K has a real embedding and one can drop
the prime degree condition. In this special case the derived small genera-
tor is an algebraic integer. For more details we refer to [11]. On the other
hand, if α is an integral generator of an imaginary quadratic field K then
h(1, α) ≥ log |∆K |/d− log 2. Thus for almost all imaginary quadratic fields
the small generators are not integral elements. Ruppert’s result for d = 2
relies heavily on a distribution result of Duke [3] that does not appear to
have an analogue for higher degrees and is ineffective. As a consequence
Ruppert’s constant C for d = 2 is ineffective.

In this note we introduce a completely different strategy which applies in
the function field case and the number field case. However, it relies on the
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existence of a certain divisor which is guaranteed under GRH but might
be rather troublesome to establish unconditionally. The aim of this short
note is to answer positively Ruppert’s question in the function field case.
So let k be an algebraic function field with finite constant field k0 and
transcendence degree one over k0. We have the following result.

Theorem 1.1. Let K be a finite field extension of k. There exists an ele-
ment α in K with K = k(α) and a constant C = C(k, [K : k]) depending
solely on k and [K : k] such that

h(1, α) ≤ gK
d(K/k)

+ C

where gK denotes the genus of the function field K with field of constants
K0 and d(K/k) = [K : k]/[K0 : k0].

2. Notation and definitions
Throughout this note we fix an algebraic closure k of k. All fields are

considered to be subfields of k. For any finite extension F of k we write F0
for the field of constants in F ; in other words F0 is the algebraic closure
of k0 in F . When we talk of the field F we implicitly mean the field F
with field of constants F0. We define the geometric degree d(F/k) of the
extension F over k as

d(F/k) = [F : k]
[F0 : k0]

.

Let M(F ) be the set of all places in F . For a place ℘ in M(F ) let O℘ be
the valuation ring of F at ℘; we can identify ℘ with the unique maximal
ideal in O℘. We write F℘ = O℘/℘ for the residue class field and F̂℘ for
the topological completion of F at the place ℘. Write ord℘ for the order
function on F̂℘ normalized to have image in Z∪∞. We extend ord℘ to F̂℘

n

by defining

ord℘(x1, ..., xn) = min
1≤i≤n

ord℘ xi

with the usual convention ord℘ 0 =∞ > 0. Each non-zero element x of Fn
gives rise to a divisor (x) over F

(x) =
∑

℘∈M(F )
ord℘(x) · ℘.

For a divisor A over F we define the Riemann-Roch space in Fn

Ln(A) = {x ∈ Fn\0; (x) +A ≥ 0} ∪ {0}.

This is a F0 vector space of finite dimension. Denote its dimension over F0
by ln(A).
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The degree of a place ℘ in M(F ) is defined by degF ℘ = [F℘ : F0]. Let K
be a finite extension of F , and let B be a place inM(K) above ℘. We write
f(B/℘) = [KB : F℘] for the residue degree of B over ℘. Then we have

degKB = [KB : K0] = [KB : F0]
[K0 : F0]

= [KB : F℘]
[K0 : F0]

[F℘ : F0]

= f(B/℘)
[K0 : F0]

degF ℘.(2.1)

Writing e(B/℘) for the ramification index we also have∑
B|℘
e(B/℘)f(B/℘) = [K : F ],(2.2)

see for example III.1.11.Theorem in [9].
Each divisor A =

∑
℘ a℘℘ over the smaller field F naturally defines a

divisor

A(K) =
∑
℘

∑
B|℘
a℘e(B/℘)B

over the large field K.
As in [10] we define the height h on non-zero x in Kn by

h(x) = −degK(x)
d(K/k)

.(2.3)

Note that the degree of a principal divisor is zero so that the height de-
fines a function on projective space Pn−1(K) over K of dimension n − 1.
This shows also that the height is nonnegative since to evaluate the height
of x we can assume that one coordinate is 1. Moreover, it is absolute in
the following sense. Suppose x ∈ Kn and let D be the divisor given by
D = (x). Let R be a finite extension of K and view x ∈ Rn. Let D(R)

be the divisor over R given by D(R) = (x). By [1] Chap.15, Thm.9 we
have degR(D(R)) = d(R/K) degK(D), and by [1] Chap.15, Thm.2 we have
d(R/k) = d(R/K)d(K/k). Thus h(x) remains unchanged if one views x
in Rn. Therefore the height extends to a projective height on kn. Suppose
x ∈ Ln(A) ⊆ Kn then directly from the definition we see that

h(x) ≤ degK A

d(K/k)
.(2.4)

3. The strategy
Let S be a finite set of places in M(K) such that the following two

properties hold:
(i) for each place p inM(k) there is at most one place in S that lies above p,
(ii)f(B/p) = 1 for all B ∈ S and p ∈M(k) with B | p.
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A set S with these two properties will be called admissible. Note that for
each field F with k ⊆ F ⊆ K and for all places B,B′ ∈ S, ℘, ℘′ ∈ M(F )
with B | ℘ and B′ | ℘′ we have

B 6= B′ ⇒ ℘ 6= ℘′,(3.1)
f(B′/℘′) = 1.(3.2)

We say the divisor A is admissible if it can be written in the form

A =
∑
B∈S

1 ·B.(3.3)

with an admissible set S.

Lemma 3.1. Suppose A is an admissible divisor, and suppose x = (1, x)
with x /∈ K0 and x ∈ L2(A). Then k(x) = K and h(x) ≤ degK A/d(K/k).

Proof. Suppose k(x) = F ( K, and write (x) =
∑
℘ a℘℘ for the divisor

over F . When we consider (x) as a divisor over K we have (x) =
∑

B aBB
with aB = a℘e(B/℘). Note that none of the coefficients a℘ is positive, and
since x /∈ K0 at least one is negative, say a℘′ . Since (x) lies in L2(A) and A
is an admissible divisor we conclude by (3.1) that there is exactly one place
B′ in M(K) with B′ | ℘′ and by (3.2) that f(B′/℘′) = 1. Together with
(2.2) we deduce that 1 < [K : F ] =

∑
B′|℘′ e(B′/℘′)f(B′/℘′) = e(B′/℘′).

This means that aB′ = a℘′e(B′/℘′) < a℘′ ≤ −1, contradicting the fact
A + (x) ≥ 0. Thus k(x) = K. The remaining statement comes from (2.4).2

Lemma 3.2. Suppose A is an admissible divisor with degK A > gK . Then
there exists α in K with k(α) = K and

h(1, α) ≤ degK A

d(K/k)
.

Proof. We apply the Theorem of Riemann-Roch to the space L1(A) = {x ∈
K\0; (x) + A ≥ 0} ∪ {0} to conclude l1(A) > 1. Therefore we find a α
in L1(A)\K0. Now (x) = (1, α) and (α) have the same pole-divisors, and
since A ≥ 0 we see that (x) lies in L2(A). Applying Lemma 3.1 proves the
lemma. 2

4. Constructing a suitable divisor
In this section we will prove that K admits an admissible divisor of

degree gK + 1 provided gK is large enough.

Lemma 4.1. Let l be a positive integer. The number of places B ∈M(K)
with

degKB = l and
f(B/p) = 1 for p ∈M(k) with B | p
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is

≥ |K0|l

l
− (2 + 7gK) |K0|l/2

l
− l[K0 : k0][K : k](|K0|l/2 + (2 + 7gk)|K0|l/4).

Proof. Using Riemann’s hypothesis one can obtain a good lower bound for
the number of places B of fixed degree. For instance V.2.10 Corollary (a)
in [9] tells us that the total number of places B ∈M(K) with degKB = l
is

≥ |K0|l

l
− (2 + 7gK) |K0|l/2

l
.

From (2.1) we get degk p = l[K0 : k0]/f(B/p) for p ∈M(k), B | p. Suppose
f = f(B/p) > 1. Applying V.2.10 Corollary (a) again we get the following
upper bound for the number of places p ∈M(k) with degk p = l[K0 : k0]/f

f |k0|l[K0:k0]/f

l[K0 : k0]
+ (2 + 7gk)

f |k0|l[K0:k0]/(2f)

l[K0 : k0]

= f |K0|l/f

l[K0 : k0]
+ (2 + 7gk)

f |K0|l/(2f)

l[K0 : k0]
≤ |K0|l/2 + (2 + 7gk)|K0|l/4.

Above each place p in M(k) there lie at most [K : k] places B ∈ M(K).
Therefore the number of places B ∈ M(K) satisfying degKB = l and
f(B/p) = f > 1 is

≤ [K : k](|K0|l/2 + (2 + 7gk)|K0|l/4).
Summing over all divisors f of l[K0 : k0] we find that the number of places
B ∈M(K) satisfying degKB = l and f(B/p) > 1 is

≤ l[K0 : k0][K : k](|K0|l/2 + (2 + 7gk)|K0|l/4).
This in turn implies that the number of places B ∈ M(K) satisfying
degKB = l and f(B/p) = 1 is

≥ |K0|l

l
− (2 + 7gK) |K0|l/2

l
− l[K0 : k0][K : k](|K0|l/2 + (2 + 7gk)|K0|l/4),

and this proves the lemma. 2

5. Proof of Theorem 1.1
Let d be a positive integer. We can find a constant C1 = C1(k, d) such

that with l = gK + 1
|K0|l

l
− (2 + 7gK) |K0|l/2

l
− l[K0 : k0][K : k](|K0|l/2 + (2 + 7gk)|K0|l/4) > 0

for all extensions K of k satisfying gK > C1 and [K : k] = d. By virtue of
Lemma 4.1 we conclude that for each suchK there exists a place B ∈M(K)
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with degKB = gK + 1 and f(B/p) = 1 for p ∈ M(k) with B | p. In
particular there exists an admissible divisor, namely B, with degKB =
gK + 1. From Lemma 3.2 we conclude that if gK > C1 and [K : k] = d then
there exists α ∈ K withK = k(α) and h(1, α) ≤ (gK+1)/d(K/k). There are
only finitely many field extensions K of k of degree d with gK ≤ C1. Hence
there exists a constant C as in Theorem 1.1 depending solely on C1, k, d,
and thus depending solely on k, d, such that the statement of Theorem 1.1
holds for all extensions K of k of degree d.
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