Let be an algebraic number field and the ring of integers of . In this paper, we prove an analogue of Voronoï’s theorem for -lattices and the finiteness of the number of similar isometry classes of perfect -lattices.
Soient un corps de nombres et l’anneau des entiers de . Dans cet article, nous prouvons un analogue du théorème de Voronoï pour les -réseaux, et la finitude du nombre de classes de -réseaux parfaits, à similitude près.
@article{JTNB_2010__22_3_727_0, author = {Kenji Okuda and Syouji Yano}, title = {A generalization of {Vorono{\"\i}{\textquoteright}s} {Theorem} to algebraic lattices}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {727--740}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {3}, year = {2010}, doi = {10.5802/jtnb.742}, mrnumber = {2769341}, zbl = {1253.11072}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.742/} }
TY - JOUR AU - Kenji Okuda AU - Syouji Yano TI - A generalization of Voronoï’s Theorem to algebraic lattices JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 727 EP - 740 VL - 22 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.742/ DO - 10.5802/jtnb.742 LA - en ID - JTNB_2010__22_3_727_0 ER -
%0 Journal Article %A Kenji Okuda %A Syouji Yano %T A generalization of Voronoï’s Theorem to algebraic lattices %J Journal de théorie des nombres de Bordeaux %D 2010 %P 727-740 %V 22 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.742/ %R 10.5802/jtnb.742 %G en %F JTNB_2010__22_3_727_0
Kenji Okuda; Syouji Yano. A generalization of Voronoï’s Theorem to algebraic lattices. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 727-740. doi : 10.5802/jtnb.742. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.742/
[1] R.Coulangeon, Voronoï Theory over Algebraic Number Fields. Monographies de l’Enseignement Mathématique 37 (2001), 147–162. | MR | Zbl
[2] P.Humbert, Théorie de la réduction des formes quadratiques définies positives dans un corps algébrique fini. Com. Math. Helv. 12 (1939–1940), 263–306. MR 2:148a. | EuDML | MR | Zbl
[3] M.Koecher, Beitrge zu einer Reduktionstheorie in Positivittsbereichen. I. Math.Ann. 141 (1960), 384–432. | EuDML | MR | Zbl
[4] M.Koecher, Beitrge zu einer Reduktionstheorie in Positivittsbereichen. II. Math.Ann. 144 (1961), 175–182. MR MR0136771(25232) | EuDML | MR | Zbl
[5] M.Laca, N.S.Larsen and S.Neshveyev, On Bost-Connes type systems for number fields. J.Number Theory 129 (2009), 325–338. | MR | Zbl
[6] A.Leibak, On additive generalization of Voronoï’s theory to algebraic number fields. Proc. Estonian Acad. Sci. Phys. Math. 54 (2005), no.4,195–211. | MR | Zbl
[7] J.Martinet, Perfect Lattices in Euclidean Spaces. Grundlehren der Mathematischen Wissenschaften 327, Springer Verlag, 2003. | MR | Zbl
[8] I.Satake, Nijikeishiki no Riron (Theory of Quadratic Forms), (in Japanese). Lectures in Mathematical Science The University of Tokyo, Graduate School of Mathematical Sciences. 22 (reprint 2003).
Cited by Sources: