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A generalization of Voronoï’s Theorem to
algebraic lattices

par Kenji OKUDA et Syouji YANO

Résumé. Soient K un corps de nombres et OK l’anneau des en-
tiers de K. Dans cet article, nous prouvons un analogue du théo-
rème de Voronoï pour les OK-réseaux, et la finitude du nombre
de classes de OK-réseaux parfaits, à similitude près.

Abstract. Let K be an algebraic number field and OK the ring
of integers of K. In this paper, we prove an analogue of Voronoï’s
theorem for OK-lattices and the finiteness of the number of similar
isometry classes of perfect OK-lattices.

1. Introduction
Let K be an algebraic number field of degree n and OK the ring of

integers of K. The purpose of this paper is to generalize Voronoï’s theorem
to the Hermite function defined on the set of OK-lattices.

Let KR = K⊗Q R and KmR = Km⊗Q R. An element of KmR is denoted as
a column vector with entries in KR. As an R-vector space, KmR is equipped
with the inner product < , > defined by

< x, y >= TrKR(txy)

for x, y ∈ KmR , where TrKR stands for the trace of the étale algebra KR
over R and x stands for the conjugate of x. An OK-submodule Λ in KmR
is called an OK-lattice if Λ is discrete and Λ ⊗Z R = KmR . The set of all
OK-lattices in KmR is denoted by L. For Λ ∈ L, the minimum Q(Λ) and the
determinant det(Λ) of Λ are defined by

Q(Λ) = min
x∈Λ\{0}

< x, x > and det(Λ) =
(
ω(KmR /Λ)
ω(KmR /OmK)

)2

,

where ω denotes an invariant measure on KmR . The Hermite function γ†K :
L −→ R>0 is defined to be

γ†K(Λ) = Q(Λ)
det(Λ)1/mn .

Manuscrit reçu le 19 janvier 2010.
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An OK-lattice Λ ∈ L is said to be extreme if γ†K attains a local maxi-
mum on Λ up to multiplication by an element of R×. In the case of K = Q,
Voronoï’s theorem says that Λ is extreme if and only if Λ is perfect and eu-
tactic. We extend this theorem to general K. Leibak ([6], Theorem 5) gave
a weak version of Voronoï’s theorem for K. However Leibak’s definition of
eutaxy is insufficient to show the extremeness. We modify Leibak’s defini-
tion of eutaxy and prove the complete analogue of Voronoï’s theorem. At
the end of this paper we prove that the number of similar isometry classes
of perfect OK-lattices in KmR is finite.

2. OK-lattices
Let K be an algebraic number field of degree n and KR = K⊗QR an étale

algebra over R. Assume K has r real embeddings σ1, · · · , σr and 2s complex
embeddings σr+1, · · · , σr+2s, where r+2s = n and σr+s+i is the composition
of the complex conjugate "−" and σr+i for 1 ≤ i ≤ s. Then KR is identified
with Rr × Cs and K is included in KR by x −→ (σ1(x), · · · , σr+s(x)). The
trace of KR over R is defined by

TrKR(x) =
r∑
i=1

xi +
s∑
i=1

(xr+i + xr+i)

for x = (x1, · · · , xr+s) ∈ KR, where xr+i is the complex conjugate of xr+i.
For x = (x1, · · · , xr+s) ∈ KR we denote x = (x1, · · · , xr, xr+1, · · · , xr+s).

Let KmR = Km⊗Q R and < , > the inner product of KmR which is defined
in Section 1. For x ∈ KmR , we set

Q(x) =< x, x > and ||x|| = Q(x)1/2.

The group of KR-linear automorphisms of KmR is denoted by GLm(KR),
which is identified with GLm(R)r×GLm(C)s. The group of isometries with
respect to Q is denoted by Om(KR), i.e.
Om(KR) = {g ∈ GLm(KR) | < gx, gy >=< x, y > for all x, y ∈ KmR }.

We denote the set of self-adjoint matrices by
Hm(KR) = {V ∈Mm(KR) | < V x, y >=< x, V y > for all x, y ∈ KmR }.

According to the identification KR ' Rr×Cs, the set Hm(KR) is identified
with Symm(R)r ×Hm(C)s, where Symm(R) (resp. Hm(C)) denote the set
of m × m real symmetric (resp. Hermitian) matrices. The trace TR on
Hm(KR) is defined to be

TR(V ) = TrKR((Tr(V1), · · · ,Tr(Vr+s)))
for V = (V1, · · · , Vr+s) in Hm(KR). The dual space of Hm(KR) as an R
vector space is denoted by Hm(KR)∗. A self-adjoint matrix V is said to
be positive definite (resp. semi-positive definite) if < V x, x >> 0 (resp.
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< V x, x >≥ 0) for all x ∈ KmR \{0}. We denote the set of positive definite
(resp. semi-positive definite) self-adjoint matrices in Hm(KR) by H++

m (KR)
(resp. H+

m(KR).)
For any OK-lattice Λ ⊂ KmR , there exists some g ∈ GLm(KR) such that

g−1Λ is a projective OK-module in Km (cf. [5], Lemma 3.2). By Steinitz’s
theorem, any projective OK-module in Km is isomorphic to Om−1

K ⊕ A
for some ideal A in OK . Let A1 = OK ,A2, · · · ,Ah be a complete system
of representatives of the ideal class group of K. Let Λi = Om−1

K ⊕ Ai for
1 ≤ i ≤ h. Then the set of all OK-lattices of KmR is given by the disjoint
union

L =
h∐
i=1
Li,

where Li is the GLm(KR)-orbit of Λi. Each Li is identified with
GLm(KR)/GL(Λi), where GL(Λi) denotes the stabilizer of Λi in GLm(KR).

Let Λ ⊂ KmR be an OK-lattice. We denote the set of shortest vectors in
Λ by

S(Λ) = {x ∈ Λ | Q(x) = Q(Λ)}.

Definition. For x ∈ KmR , we define the R-linear form ϕx ∈ Hm(KR)∗ by

ϕx(V ) =< V x, x > for V ∈ Hm(KR).

Definition. Let Λ ⊂ KmR be an OK-lattice.
(1) Λ is said to be perfect if {ϕx|x ∈ S(Λ)} generates Hm(KR)∗.
(2) Λ is said to be eutactic if there exist ρx ∈ R>0 for all x ∈ S(Λ) such

that TR =
∑
x∈S(Λ) ρxϕx.

(3) Λ is said to be extreme if the function γ†K attains a local maximum
on Λ.

This definition of perfection is same as the definition of perfection that
appeared in ([3], Section 3).

3. Some rationality of perfect OK-lattices
In this section we prove some rationality of perfect OK-lattices. We call

two OK-lattices Λ and Λ′ are isometry if Λ = TΛ′ for some T ∈ Om(KR).
For A = (aij) ∈Mm(KR), we put the A∗ = t(aij).

Theorem 3.1. A perfect OK-lattice Λ in KmR is determined up to isometry
by the set of minimum vectors S(Λ) and the minimum Q(Λ).

Proof. Let N = rm(m + 1)/2 + sm2. By the argument in Section 2, an
OK-lattice Λ is denoted by Λ = gΛ0 for some g ∈ GLm(KR) and some
projective OK-module Λ0 ⊂ Km. Let H = g∗g ∈ H++

m (KR), and S(H)
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denotes the subset g−1S(Λ) of Λ0. Then {ϕx0}x0∈S(H) also spans Hm(KR)∗
since Λ is perfect. We have

ϕx(V ) =< V x, x >=< g∗V gx0, x0 >= ϕx0(g∗V g)

for any x = gx0 ∈ S(Λ) and V ∈ Hm(KR). We consider a system of linear
equations in N variables which consist of matrix elements of V ′ ∈ Hm(KR)
such that

ϕx0(V ′) = Q(Λ) (x0 ∈ S(H)).

The coefficient of these linear equations are contained in the Galois closure
of K. By the perfection of Λ, H is a unique solution of this system of linear
equations. Therefore an isometry class of perfect OK-lattice is uniquely
determined by the set of minimum vectors and the minimum. �

The following is obvious by Cramer’s formula.

Corollary 3.1. If Λ = gΛ0 is a perfect OK-lattice and Q(Λ) = 1, then all
entries of g∗g are contained in the Galois closure of K over Q.

If K is a totally real or a CM -field (i.e. a totally imaginary quadratic
extension over a totally real algebraic number field), then we have a stronger
result. If K is a totally real field, we denote the set of m ×m symmetric
matrices with entries in K by Hm(K), i.e., Hm(K) = Hm(KR) ∩Mm(K).
If K is a CM -field, then there exists a non-trivial involution ρ on K such
that σr+1 ◦ ρ = σr+2. Hence we can define the set of m × m Hermitian
matrices with entries in K by

Hm(K) = {X ∈Mm(K) | ρ(tX) = X} = Hm(KR) ∩Mm(K).

In these cases, we have the following rationality of perfect OK-lattice.

Theorem 3.2. Let K be a totally real or a CM -field. If OK-lattice Λ = gΛ0
in KmR is perfect with Q(Λ) = 1, then g∗g ∈ Hm(K).

Proof. Let N = rm(m+ 1)/2 + sm2. By the same argument as the proof of
Theorem 3.1, there exist xi = gyi ∈ S(Λ), i = 1, · · · , N such that {ϕxi}Ni=1
spans Hm(KR)∗. Then {ϕyi}Ni=1 also spans the dual space of Hm(K) as a
Q vector space.

Let B1, · · · , BN ∈ Hm(K) be the dual basis of ϕy1 , · · · , ϕyN as a Q vector
space. Then B =

∑N
i=1Bi satisfies ϕyi(B) = ϕyi(Bi) = 1 and

ϕyi(g∗g) =< g∗gyi, yi >=< gyi, gyi >= Q(xi) = 1.

Since the system of linear equations {ϕyi(V ) = 1}Ni=1 have exactly one
solution, B = g∗g ∈ Hm(K). �
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4. Main Theorem
In this section, we prove

Theorem 4.1. Let Λ ∈ L be an OK-module. Then Λ is extreme if and
only if Λ is perfect and eutactic.

We prepare several Lemmas. The following Lemma 4.1 is proved in ([7],
Theorem 3.3.1).

Lemma 4.1 (Stiemke). Let V be a vector space and ϕ1, · · · , ϕk linear
forms from V to R. The following conditions are equivalent.

(1) {x ∈ V |ϕi(x) ≥ 0 for all i} = ∩ki=1Kerϕi.
(2) There exist ρi ∈ R>0 such that

∑k
i=1 ρiϕi = 0.

The next is proved similarly as in ([7], Theorem 3.1.7 and Theorem 3.1.8).

Lemma 4.2. (1) For any V ∈ H+
m(KR), there uniquely exists

√
V ∈

H+
m(KR) such that

V =
√
V
∗√

V =
√
V
√
V .

(2) For any U ∈ GLm(KR), there uniquely exist V ′, V ′′ ∈ H++
m (KR)

and O′, O′′ ∈ Om(KR) such that

U = O′V ′ = V ′′O′′.

As usual, the operator norm of A ∈Mm(KR) is defined to be

||A|| = sup
x∈KmR \{0}

||Ax||
||x||

.

Lemma 4.3. There exists a neighborhood U of Id in GLm(KR) such that

S(UΛ) ⊂ U(S(Λ))

for all U ∈ U .

Proof. Let Q1 = Q(Λ) and Q2 = minx∈Λ,Q(x)>Q(Λ)Q(x). Then the neigh-
borhood of Id defined by

U =
{
U ∈ GLm(KR)

∣∣∣∣∣ ||U−1|| <
√

2Q2
Q1 +Q2

, ||U || <
√
Q1 +Q2

2Q1

}
satisfies the claim, because we have

||Uy|| >
√
Q1 +Q2

2Q2
||y|| ≥

√
Q1 +Q2

2
=
√
Q1 +Q2

2Q1
||x|| > ||Ux||

for all x ∈ S(Λ) and all y ∈ Λ\(S(Λ) ∪ {0}). �
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Lemma 4.4. There exists a neighborhood V of 0 in Hm(KR) such that
Id + V ∈ H+

m(KR) for any V ∈ V and
Q(Λ) = Q(

√
Id + V Λ)⇐⇒ min

x∈S(Λ)
ϕx(V ) = 0.

Proof. Let U ⊂ GLm(KR) be a neighborhood of Id such that U satisfies
Lemma 4.3. Let V ⊂ Hm(KR) be a neighborhood of 0 such that Id + V ∈
H+
m(KR) and U =

√
Id + V is contained in U for any V ∈ V. Then we have

Q(UΛ) = minx∈S(Λ)Q(Ux) by Lemma 4.3, and that
Q(Ux) =< Ux,Ux > =< U∗Ux, x >

= ϕx(U2) = ϕx(Id + V ) = Q(x) + ϕx(V ).
Therefore we have Q(Λ) = Q(UΛ)⇐⇒ minx∈S(Λ) ϕx(V ) = 0. �

Lemma 4.5. (1) There exists a neighborhood V of 0 in Hm(KR) such
that V ∈ V satisfies

√
Id + V ∈ Om(KR) or det(

√
Id + V ) < 1 if

TR(V ) ≤ 0.
(2) Let C ⊂ Hm(KR) be a closed cone such that any V ∈ C\{0} satisfies

TR(V ) > 0. Then there exists α > 0 such that
V ∈ C and 0 < ||V || < α =⇒ det(Id + V ) > 1.

Proof. (1) Let {λ1,1, · · · , λ(r+s),m} be the set of eigenvalues of V =
(V1, · · · , Vr+s) ∈ V, where λi,j is an eigenvalue of Vi. Then eigenvalues
of Id + V are given by 1 + λ1,1, · · · , 1 + λ(r+s),m. Here we may assume that
all of eigenvalues of Id + V are positive for any V ∈ V by taking V enough
small. Hence two functions ΨV (t) = det(Id + tV ) and ψV (t) = log ΨV (t)
are well defined for t ∈ [0, 1] and for V ∈ V. Differentials of ψV are given
by

ψ′V (t) =
n∑
i=1

m∑
j=1

λi,j
1 + λi,jt

and ψ′′V (t) = −
n∑
i=1

m∑
j=1

λ2
i,j

(1 + λi,jt)2 ,

where λ(r+s+i),j = λ(r+i),j . If V = 0, then it is obvious that
√

Id + V ∈
Om(KR). Hence we assume that V 6= 0 from here. Then we have ψ′′V (t) < 0
for all t ∈ [0, 1] and ψV (0) = 0. Under the condition that TR(V ) ≤ 0, we
have

ψ′V (0) =
n∑
i=1

m∑
j=1

λi,j = TR(V ) ≤ 0.

Consequently we have ψV (t) ≤ 0 for t ∈ [0, 1], especially ψV (1) < 0. There-
fore det(

√
Id + V ) = (ΨV (1))1/2 < 1.

(2) Let Σ = {W ∈ Hm(KR)| ||W || ≤ 1}. We can define two functions ΨW (t)
and ψW (t) as the proof of 1) for any W ∈ C∩Σ and for enough small t ≥ 0.

By the condition TR(W ) > 0, we have ψW (0) = 0 and ψ′W (0) > 0.
Hence there exists tW > 0 such that ψW (t) > 0 for all t ∈ [0, tW ]. Since
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the function C ∩ Σ 3 W ′ −→ ψW ′(tW ) ∈ R is continuous, there exists a
open neighborhood V(W ) ⊂ Hm(KR) of W such that ψW ′(tW ) > 0 for
any W ′ ∈ V(W ) ∩ (C ∩ Σ). On the other hand, we have ψW ′(t) > 0 for all
t ∈ (0, tW ] by the convexity of ψW ′(t).

Since C ∩Σ ⊂ ∪W∈C∩ΣV(W ) is compact, there exist W1, · · · ,Wk ∈ C ∩Σ
such that ∪ki=1V(Wi) ⊃ C ∩ Σ. Let α = min(tW1 , · · · , tWk). Let V ∈ C such
that V satisfies the condition 0 < ||V || < α in the claim. Since W = V

||V || is
contained in C ∩ Σ, we have ψW (t) > 0 for all t ∈ (0, α). Then

ψW (||V ||) =
n∑
i=1

m∑
j=1

(1 + λij
||V ||
||V ||) = ψV (1) > 0.

Therefore we have det(Id + V ) > 1. �

Proposition 4.1. Let Λ ∈ L be an OK-module. The following conditions
are equivalent.

(1) Λ is extreme.
(2) If V ∈ Hm(KR) satisfies minx∈S(Λ) ϕx(V ) = 0 and TR(V ) ≤ 0,

then V = 0.

Proof. (1 ⇒ 2) Let V ⊂ Hm(KR) be a neighborhood of 0 which satis-
fies Lemma 4.4 and Lemma 4.5. Let V ∈ Hm(KR) such that V satisfies
minx∈S(Λ) ϕx(V ) = 0 and TR(V ) ≤ 0. Since Λ is extreme, γ†K attains a lo-
cal maximum on Λ in some neighborhood VΛ of Λ. For enough small λ > 0,
λV is contained in V and then

√
Id + λV (Λ) is in VΛ. From the equivalence

proved in Lemma 4.4, we have Q(Λ) = Q(
√

Id + λV (Λ)). Moreover we have
det
√

Id + λV < 1 or V = 0 by Lemma 4.5. If det
√

Id + λV < 1, then it is
contradict to the extremeness of Λ since

γ†K(
√

Id + λV (Λ)) = Q(
√

Id + λV (Λ))
det(
√

Id + λV (Λ))1/nm >
Q(Λ)

det(Λ)1/nm = γ†K(Λ).

Therefore we have V = 0.
(1⇐ 2) We may assume that Q(Λ) = 1. Let

C = {V ∈ Hm(KR) | min
x∈S(Λ)

ϕx(V ) ≥ 0}.

In order to apply Lemma 4.5.2 to C, we show that C satisfies the hypothesis
of Lemma 4.5.2. It is clear that C is a closed cone. Let V ∈ C such that
minx∈S(Λ) ϕx(V ) = 0. If TR(V ) ≤ 0, then we have V = 0 by the condition
2. Hence V ∈ C\{0} with minx∈S(Λ) ϕx(V ) = 0 satisfies TR(V ) > 0. Let
V ∈ C such that minx∈S(Λ) ϕx(V ) = k > 0. Since V ′ = V − kId satisfies
minx∈S(Λ) ϕx(V ′) = 0, we have V ′ ∈ C and the argument above says that
V ′ = 0 or TR(V ′) > 0. Hence TR(V ) = TR(V ′) + kmn > 0. Therefore C
satisfies the hypothesis of Lemma 4.5.2, i.e. there exists α > 0 such that
det(Id + V ) > 1 for any V ∈ C with 0 < ||V || < α. We fix such 0 < α < 1.
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Let 0 < β < α. Let V = U∗U − Id for U ∈ GLm(KR) and µV =
minx∈S(Λ) ϕx(V ). Since

2|ϕx(V )| = 2| < V x, x > |
= | ||(V + Id)x||2 − ||V x||2 − ||x||2|
≤ |(||V x||+ ||x||)2 − ||V x||2 − ||x||2|
= 2||V x|| · ||x||
≤ 2||V ||,

(4.1)

we have |µV | < ||V || and cV =
√

1/(1 + µV ) is well-defined if ||V || < β. Let
U be a neighborhood of Id ∈ GLm(KR) such that U satisfies Lemma 4.3.
LetW be a neighborhood of Id ∈ GLm(KR) such that {V = U∗U−Id | U ∈
W} ⊂ {V ∈ Hm(KR) | ||V || < β} and {U ′ = cV U | U ∈ W} ⊂ U . We show
γ†K(U(Λ)) < γ†K(Λ) for any U ∈ W. Let U ′ = cV U and V ′ = U

′∗U ′ − Id =
c2
V V − c2

V µV Id for U ∈ W. Since U ′ ∈ U and V ′ satisfies

min
x∈S(Λ)

ϕx(V ′) = min
x∈S(Λ)

(c2
V < V x, x > −c2

V µV < x, x >)

= c2
V min
x∈S(Λ)

(ϕx(V )− µVQ(x))

= 0,

(4.2)

we have Q(Λ) = Q(U ′Λ) by Lemma 4.3. Since V ′ ∈ C and

||V ′|| = c4
V ||V − µV Id||

<
1

(1 + µV )2 (||V ||+ µ2
V ||Id||)

<
β + β2

(1− β)2

< α,

(4.3)

we have det(Id + V ′) = det(U ′)2 > 1 by Lemma 4.5.2. Hence we have

γ†K(U(Λ)) = γ†K(U ′(Λ))

= Q(U ′(Λ))
(detU ′(Λ))1/mn

<
Q(Λ)

(det Λ)1/mn

= γ†K(Λ)

(4.4)

for any U ∈ W. �

Proof of Theorem 4.1. We use Proposition 4.1.
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Assume that Λ is perfect and eutactic. Let V ∈ Hm(KR) such that V
satisfies minx∈S(Λ) ϕx(V ) = 0 and TR(V ) ≤ 0. Since Λ is eutactic, TR is
given by a linear combination of ϕx such that TR =

∑
x∈S(Λ) ρxϕx for some

ρx ≥ 0. Hence we have ϕx(V ) = 0 for all x ∈ S(Λ). On the other hand,
ϕx(x ∈ S(Λ)) generates Hm(KR)∗ from the perfection of Λ. Therefore we
have V = 0.

Conversely, assume that Λ is extreme. First we prove the perfection of
Λ. Let V ∈ Hm(KR) such that ϕx(V ) = 0 for all x ∈ S(Λ). We may assume
that TR(V ) ≤ 0 by replace V with −V if necessary. Then we have V = 0
by Proposition 4.1.2. Hence {ϕx}x∈S(Λ) spans Hm(KR)∗.

Now we prove the eutaxy of Λ. Let V ∈ Hm(KR) such that V satisfies
TR(V ) ≤ 0 and ϕx(V ) ≥ 0 for all x ∈ S(Λ). Let k = minx∈S(Λ) ϕx(V ) ·
Q(Λ)−1 ≥ 0 and V ′ = V − kId. Then we have minx∈S(Λ) ϕx(V ′) =
minx∈S(Λ)(ϕx(V ) − kQ(x)) = 0 and TR(V ′) = TR(V ) − kmn < 0. Hence
we have V ′ = 0 by Proposition 4.1.2. Though we have V = kId, V sat-
isfies TR(V ) ≤ 0. Therefore V = 0. Applying Lemma 4.1 to linear forms
ϕx(x ∈ S(Λ)) and −TR defined over Hm(KR), we can prove the eutaxy
of Λ. �

Example. Let K = Q(
√

2,
√
−1) be a bi-quadratic extension over Q. The

Galois group Gal(K/Q) = {σ1, σ2, σ3, σ4} is given by

σ1 : K 3 x+ y
√

2 + z
√
−1 + w

√
−2 −→ x+ y

√
2 + z

√
−1 + w

√
−2 ∈ K

σ2 : K 3 x+ y
√

2 + z
√
−1 + w

√
−2 −→ x− y

√
2 + z

√
−1− w

√
−2 ∈ K

σ3 : K 3 x+ y
√

2 + z
√
−1 + w

√
−2 −→ x+ y

√
2− z

√
−1− w

√
−2 ∈ K

σ4 : K 3 x+ y
√

2 + z
√
−1 + w

√
−2 −→ x− y

√
2− z

√
−1 + w

√
−2 ∈ K

where x, y, z, w ∈ Q. Then σ3 (resp. σ4) is equal to a composition of the
complex conjugate and σ1 (resp. σ2). Hence K is embedded in KR = C2 by
σ : K 3 x ↪→ (σ1(x), σ2(x)) ∈ KR. The ring of integers OK of K is given
by OK = Z[(

√
2 +
√
−2)/2].

Let g = (
√

2 +
√

2,
√

2−
√

2) ∈ H++
1 (KR) = R2

>0. We consider the
OK-module Λ = gOK .

For X = ((
√

2 +
√

2)σ1(x), (
√

2−
√

2)σ2(x)) ∈ Λ with x ∈ OK , Q(X)
is given such that

Q(X) = TrKR(σ1(x)(2 +
√

2)σ1(x), σ2(x)(2−
√

2)σ2(x))

= 2(σ1(x)(2 +
√

2)σ1(x) + σ2(x)(2−
√

2)σ2(x)).
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If x = a+ b
√

2/2 + c
√
−1 + d

√
−2/2 ∈ OK of a, b, c, d ∈ Z and b+ d ∈ 2Z,

then we have

Q(X) = 2(a b c d)

(2 +
√

2)


1

√
2/2

√
−1

√
−2/2√

2/2 1/2
√
−2/2

√
−1/2

−
√
−1 −

√
−2/2 1

√
2/2

−
√
−2/2 −

√
−1/2

√
2/2 1/2



+(2−
√

2)


1 −

√
2/2

√
−1 −

√
−2/2

−
√

2/2 1/2 −
√
−2/2

√
−1/2

−
√
−1

√
−2/2 1 −

√
2/2√

−2/2 −
√
−1/2 −

√
2/2 1/2




a
b
c
d



= 2(a b c d)


4 2 4

√
−1 2

√
−1

2 2 2
√
−1 2

√
−1

−4
√
−1 −2

√
−1 4 2

−2
√
−1 −2

√
−1 2 2



a
b
c
d


= 2(2a+ b)2 + 2b2 + 2(2c+ d)2 + 2d2.

Hence the set of minimal vectors of Λ is given by

S(Λ) =
{
gσ(x)

∣∣∣∣∣ x = ±1,±
√
−1,±(1−

√
2),±(
√
−1−
√
−2),

±
√

2
2

(1±
√
−1),±

√
2
2

(1−
√

2±
√
−1),±

√
2
2

(1± (
√
−2−
√
−1)),

±
√

2
2

(1−
√

2± (
√
−2−
√
−1))

}

=

gσ(x)

∣∣∣∣∣∣
x = ekπ

√
−1/4, (

√
2− 1)ekπ

√
−1/4,(√

2−
√

2
)
e(2k+1)π

√
−1/8,

for 0 ≤ k ≤ 7

 ,
where orders of signs are arbitrary. Especially we have Q(Λ) = 8.

For X = gσ(x) ∈ S(Λ) and (v1, v2) ∈ H1(KR) = R2, ϕX is given by

ϕX(v1, v2) = 2(2 +
√

2)v1σ1(x)σ1(x) + 2(2−
√

2)v2σ2(x)σ2(x).

Hence we can describe ϕX as follows:

(a) x = ekπ
√
−1/4 ⇒ ϕX(v1, v2) = (4 + 2

√
2)v1 + (4− 2

√
2)v2

(b) x = (
√

2− 1)ekπ
√
−1/4 ⇒ ϕX(v1, v2) = (4− 2

√
2)v1 + (4 + 2

√
2)v2

(c) x = (
√

2−
√

2)e(2k+1)π
√
−1/8 ⇒ϕX(v1, v2) = 4v1 + 4v2.

Since (a) and (b) span the dual space of H1(KR) as a R-vector space, Λ is
perfect. Moreover Λ is obviously eutactic.
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5. Finiteness of perfect OK-lattices
In this section, we prove that the number of similar isometry classes of

perfect OK-lattices in KmR is finite. We keep the notations in Section 3.
Let Λ1, · · · ,Λh be the lattices defined in Section 2. We fix a Λ0 ∈
{Λ1, · · · ,Λh}. The discrete group GL(Λ0) acts on H++

m (KR) as usual, i.e.
H ·γ = γ∗Hγ for γ ∈ GL(Λ0) and H ∈ H++

m (KR). Let α > 1 be a sufficient
large constant. We define the Siegel set Sα of GLm(KR) by

Sα =



T ∗DT ∈ GLm(KR)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Dk =

 dk,1
. . .

dk,m

 ,

Tk =


1 t

(k)
ij

. . .
1

 ,
dk,i > 0,

dk,i
dk′,i

< α,
dk,i
dk,i+1

< α, |t(k)ij | < α

(1 ≤ i ≤ j ≤ m, 1 ≤ k, k′ ≤ r + s)



.

For a given B ∈ GLm(KR), we set

Ωα,B = {B∗T ∗DTB | T ∗DT ∈ Sα}.

Then Humbert’s reduction theory says that there exists a finite subset
{B1, · · · , Bκ} of GLm(K) such that H++

m (KR) = ∪κi=1Ωα,Bi · GL(Λ0) (See
[2] and [8], Theorem 18.5).

Theorem 5.1. The number of similar isometry classes of perfect OK-
lattices in KmR is finite.

Proof. Let Λ be a perfect OK-lattice with Q(Λ) = 1. Then there exists
g ∈ GLm(KR) and Λ0 ∈ {Λ1, · · · ,Λh} such that Λ = gΛ0. Since g∗g ∈
H++
m (KR), there exists some α > 1 and B ∈ {B1, · · · , Bκ} such that g∗g ∈

Ωα,B ·GL(Λ0). Let g∗g = γ∗B∗T ∗DTBγ for γ ∈ GL(Λ0) and T ∗DT ∈ Sα.
We put Dr+s+` = Dr+` and Tr+s+` = (tij(r+`)) for 1 ≤ ` ≤ s. Let x ∈ S(Λ)
be a minimum vector. Then x is denoted by x = gx0 for some x0 ∈ Λ0 and
we have

Q(x) =Q(
√
DTBγx0) =

n∑
k=1
||
√
DkTkσk(B)σk(γx0)||2

≥
n∑
k=1
||(
√
DkTkσk(B))−1||−2||σk(y0)||2

≥
n∑
k=1
||
√
Dk
−1||−2||T−1

k ||
−2||σk(B)−1||−2||σk(y0)||2,

(5.1)
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where y0 = γx0 ∈ Λ0. Since all entries of T−1
k = (t

′(k)
ij ) are bounded by a

constant α(α+ 1)m−2, ||T−1
k ||2 is bounded as

||T−1
k ||

2 = sup
y 6=0

||T−1
k y||2

||y||2
= sup
y 6=0
||T−1
k

y

||y||
||2 = sup

||z||=1
||T−1
k z||2

= sup
||z||=1

m∑
i=1
|
m∑
j=i

t
′(k)
ij zj |2

≤
m∑
i=1

(m− i+ 1)2α2(α+ 1)2m−4

=1
6
m(m+ 1)(2m+ 1)α2(α+ 1)2m−4,

(5.2)

where z = (zj). We put CT = 6−1m(m + 1)(2m + 1)α2(α + 1)2m−4. And

more, since
dk,1
dk,j

=
dk,1
dk,2
· · · dk,j−1

dk,j
≤ αj−1 ≤ αm, ||

√
Dk
−1||2 is also bounded

as

||
√
Dk
−1||2 = sup

y 6=0

||y||2

||
√
Dky||2

= sup
y 6=0

||y||2∑m
j=1 dk,jyjyj

≤ sup
y 6=0

||y||2

min
j
dk,j ||y||2

= (min
j
dk,j)−1

≤d−1
k,1α

m.

(5.3)

We put β = max(||σk(B1)−1||, · · · , ||σk(Bκ)−1||).
Let e1 = t(1, 0, · · · , 0) ∈ Km. Then there exists λB ∈ OK for each

B ∈ {B1, · · · , Bκ} such that e0 = γ−1(λBB−1e1) is contained in Λ0 and
e0 satisfies Q(ge0) ≤ Q(λBe1)

∑n
k=1 dk,1. We put c = max1≤i≤κQ(λBie1).

Then we have

Q(x) ≥
n∑
k=1
||
√
Dk
−1||−2||T−1

k ||
−2||σk(B)−1||−2||σk(y0)||2

≥
n∑
k=1

dk,1α
−m · C−1

T β−2||σk(y0)||2

≥min
k
dk,1

(
n∑
k=1

α−mC−1
T β−2||σk(y0)||2

)

≥n−1
(
n∑
k=1

α−1dk,1

)(
n∑
k=1

α−mC−1
T β−2||σk(y0)||2

)

≥C−1
K,mQ(ge0)

(
n∑
k=1
||σk(y0)||2

)
,

(5.4)
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where CK,m = nαm+1CTβ
2c is a constant which depends only on K and

m. Let S0 = {z ∈ Λ0 |
∑n
k=1 ||σk(z)||2 ≤ CK,m}, which is a finite subset of

Λ0. Then y0 ∈ S0 since
n∑
k=1
||σk(y0)||2 is bounded as

n∑
k=1
||σk(y0)||2 ≤ CK,m

Q(x)
Q(ge0)

≤ CK,m.

Therefore γg−1S(Λ), and hence g−1S(Λ), is contained S0. By the proof of
Theorem 3.1, any perfect OK-lattice is uniquely determined by its shortest
vectors and its minimum. Since the possibility of subsets of S0 is finite, the
number of perfect OK-lattices up to similarity and isometry is finite. �

Remark. Theorem 5.1 was proved by Koecher ([3], Section 9.10) in the
case of Λ0 = OmK . It is possible to apply Koecher’s method to a general Λ0.
Our proof is different from Koecher’s. We sketch Koecher’s method in the
following.

We write ξ for the constant 2mnρ−1
mn∆

m/2
K , where ρmn is the volume of

the unit ball of dimension mn and ∆K is the absolute value of the discrim-
inant of K. We take a1, · · · , as ∈ OK such that 1 ≤ NK/Q(a1) < · · · <
NK/Q(as) ≤ ξ and s is as big as possible. We define an equivalent relation
in the set {X ∈Mm(OK) | detX = aiO×K} for each i as follows : X1 ∼ X2
if X1−X2 ∈ aiMm(OK). Let B(ai) be a complete system of representative
of the quotient set {X ∈ Mm(OK) | detX = aiO×K}/ ∼, and let B =⋃s
i=1B(ai). Define A = {x ∈ OmK | x is a column vector of some matrix in

B} and Ã = {xx∗ | x ∈ A}. We consider a subset N ⊂ Ã such that
aN =

∑
X∈N X is positive definite. Since each B(ai) is a finite set, the

number of such subset N is finite.
Let V = {v ∈ H++

m (KR) | v is perfect with minimum 1}. For v ∈ V ,
there exist linear independent minimal vectors x1, · · · , xm ∈ OmK such that
1 ≤ |NKR/R(det(x1, · · · , xm))| ≤ ξ. By Koecher’s Lemma ([3], Lemma 13),
there exists a unimodular matrix u such that u(x1, · · · , xm) ∈ B. This
induces (uxi)(uxi)∗ ∈ Ã for all 1 ≤ i ≤ m. Since av =

∑m
i=1(uxi)(uxi)∗ is

a positive definite, av = aN for some N ⊂ Ã. Finiteness of N implies that
there exists a self-adjoint matrix d ∈ H++

m (KR) such that av−d ∈ H++
m (KR)

for all v ∈ V . This d is independent of the choice of v ∈ V . Then we have

m =
m∑
i=1

< vxi, xi >

= TrKR/RTr((u−1∗vu−1)aV )
> TrKR/RTr((u−1∗vu−1)d)
> ρ(d)TR((u−1∗vu−1)2),

(5.5)
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where ρ(d) is a constant which depends only on K and m. Since
TR((u−1∗vu−1)2) is bounded by a constant and V ⊂ H++

m (KR) is discrete,
the number of V is finite up to the action by unimodular matrix u.
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