A local analogue of the Grothendieck Conjecture is an equivalence between the category of complete discrete valuation fields with finite residue fields of characteristic and the category of absolute Galois groups of fields together with their ramification filtrations. The case of characteristic 0 fields was studied by Mochizuki several years ago. Then the author of this paper proved it by a different method in the case (but with no restrictions on the characteristic of ). In this paper we suggest a modified approach: it covers the case , contains considerable technical simplifications and replaces the Galois group of by its maximal pro--quotient. Special attention is paid to the procedure of recovering field isomorphisms coming from isomorphisms of Galois groups, which are compatible with the corresponding ramification filtrations.
L’analogue local de la conjecture de Grothendieck peut être formulé comme une équivalence entre la catégorie des corps complets pour une valuation discrete à corps résiduel fini de caractéristique et la catégorie des groupes de Galois absolus des corps munis de la filtration de ramification. Le cas des corps de caractéristique a été étudié par Mochizuki il y a quelques années. Ensuite, l’auteur de cet article a établi, par une méthode différente l’analogue de la conjecture de Grothendieck dans le cas (mais de caractéristique quelconque). Nous proposons ici une modification de cette approche qui inclut le cas dans la preuve, contient des simplifications considérables et remplace le groupe de Galois par son pro--quotient maximal. Une attention particulière est accordée au procédé de la reconstruction de l’isomorphisme de corps à partir d’un isomorphisme de groupe de Galois compatible avec les filtrations de ramification correspondantes.
@article{JTNB_2010__22_1_1_0, author = {Victor Abrashkin}, title = {Modified proof of a local analogue of the {Grothendieck} conjecture}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--50}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {1}, year = {2010}, doi = {10.5802/jtnb.703}, mrnumber = {2675872}, zbl = {1229.11148}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.703/} }
TY - JOUR AU - Victor Abrashkin TI - Modified proof of a local analogue of the Grothendieck conjecture JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 1 EP - 50 VL - 22 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.703/ DO - 10.5802/jtnb.703 LA - en ID - JTNB_2010__22_1_1_0 ER -
%0 Journal Article %A Victor Abrashkin %T Modified proof of a local analogue of the Grothendieck conjecture %J Journal de théorie des nombres de Bordeaux %D 2010 %P 1-50 %V 22 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.703/ %R 10.5802/jtnb.703 %G en %F JTNB_2010__22_1_1_0
Victor Abrashkin. Modified proof of a local analogue of the Grothendieck conjecture. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 1, pp. 1-50. doi : 10.5802/jtnb.703. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.703/
[1] V.A. Abrashkin, Ramification filtration of the Galois group of a local field. II. Proceeding of Steklov Math. Inst. 208 (1995), 18–69. | MR | Zbl
[2] V.A. Abrashkin, Ramification filtration of the Galois group of a local field. III. Izvestiya RAN, ser. math. 62 (1998), 3–48. | MR | Zbl
[3] V.A. Abrashkin, A local analogue of the Grothendieck conjecture. Int. J. of Math. 11 (2000), 3–43. | MR | Zbl
[4] P. Berthelot, W. Messing, Théorie de Deudonné Cristalline III: Théorèmes d’Équivalence et de Pleine Fidélité. The Grotendieck Festschrift. A Collection of Articles Written in Honor of 60th Birthday of Alexander Grothendieck, volume 1, eds P.Cartier etc. Birkhauser, 1990, 173–247. | MR | Zbl
[5] J.-M. Fontaine, Representations -adiques des corps locaux (1-ere partie). The Grothendieck Festschrift. A Collection of Articles Written in Honor of the 60th Birthday of Alexander Grothendieck, volume II, eds. P.Cartier etc. Birkhauser, 1990, 249–309. | MR | Zbl
[6] K. Iwasawa, Local class field theory. Oxford University Press, 1986 | MR | Zbl
[7] Sh.Mochizuki, A version of the Grothendieck conjecture for -adic local fields. Int. J. Math. 8 (1997), 499–506. | MR | Zbl
[8] J.-P.Serre, Lie algebras and Lie groups. Lectures given at Harvard University. New-York-Amsterdam, Bevjamin, 1965. | MR | Zbl
[9] I.R. Shafarevich. A general reciprocity law (In Russian). Mat. Sbornik 26 (1950), 113–146; Engl. transl. in Amer. Math. Soc. Transl. Ser. 2, volume 2 (1956), 59–72. | MR | Zbl
[10] J.-P. Wintenberger, Extensions abéliennes et groupes d’automorphismes de corps locaux, C. R. Acad. Sc. Paris, Série A 290 (1980), 201–203. | MR | Zbl
[11] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux; application. Ann. Sci. Ec. Norm. Super., IV. Ser 16 (1983), 59–89. | Numdam | MR | Zbl
Cited by Sources: