Mertens’ product formula asserts that
as . Calculation shows that the right side of the formula exceeds the left side for . It was suggested by Rosser and Schoenfeld that, by analogy with Littlewood’s result on , this and a complementary inequality might change their sense for sufficiently large values of . We show this to be the case.
La formule de Mertens affirme que
quand . Les calculs montrent que la partie droite de la formule est supérieure à la partie gauche pour . Par analogie avec le résultat de Littlewood sur , Rosser et Schoenfeld ont suggéré que cette inégalité et son contraire devait se produire pour des valeurs suffisamment grandes de . Nous montrons que c’est bien le cas.
Keywords: Mertens’ product formula, oscillation, Euler’s constant, Riemann hypothesis, zeta function
@article{JTNB_2009__21_3_523_0, author = {Harold G. Diamond and Janos Pintz}, title = {Oscillation of {Mertens{\textquoteright}} product formula}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {523--533}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.687}, mrnumber = {2605532}, zbl = {1214.11102}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.687/} }
TY - JOUR AU - Harold G. Diamond AU - Janos Pintz TI - Oscillation of Mertens’ product formula JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 523 EP - 533 VL - 21 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.687/ DO - 10.5802/jtnb.687 LA - en ID - JTNB_2009__21_3_523_0 ER -
%0 Journal Article %A Harold G. Diamond %A Janos Pintz %T Oscillation of Mertens’ product formula %J Journal de théorie des nombres de Bordeaux %D 2009 %P 523-533 %V 21 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.687/ %R 10.5802/jtnb.687 %G en %F JTNB_2009__21_3_523_0
Harold G. Diamond; Janos Pintz. Oscillation of Mertens’ product formula. Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 3, pp. 523-533. doi : 10.5802/jtnb.687. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.687/
[1] R. J. Anderson and H. M. Stark, Oscillation theorems. In Analytic number theory (Philadelphia, Pa., 1980), pp. 79–106, Lecture Notes in Math. 899, Springer, 1981. MR0654520 (83h:10082). | MR | Zbl
[2] T. M. Apostol, Introduction to analytic number theory. Undergraduate Texts in Mathematics, Springer, 1976. MR0434929 (55 #7892). | MR | Zbl
[3] P. T. Bateman and H. G. Diamond, Analytic Number Theory: An Introductory Course. World Scientific Pub. Co., 2004. MR2111739 (2005h:11208). | MR | Zbl
[4] H. Cramér, Some theorems concerning prime numbers. Ark. f. Mat., Astron. och Fys. 15, No. 5 (1921), 1–33.
[5] H. G. Diamond, Changes of sign of . Enseign. Math. (2) 21 (1975), 1–14. MR0376566 (51 #12741). | MR | Zbl
[6] A. Y. Fawaz, The explicit formula for , Proc. London Math. Soc. (3) 1 (1951), 86–103. MR0043841 (13 #327c). | MR | Zbl
[7] A. Y. Fawaz, On an unsolved problem in the analytic theory of numbers, Quart. J. Math., Oxford Ser. (2) 3 (1952), 282–295. MR0051857 (14 #537a). | MR | Zbl
[8] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed. Oxford Univ. Press, 1979. MR0568909 (81i:10002). | MR | Zbl
[9] A. E. Ingham, Two conjectures in the theory of numbers. Am. J. Math. 64 (1942), 313–319. MR000202 (3 #271c). | MR | Zbl
[10] J. E. Littlewood, Sur la distribution des nombres premiers. Comptes Rendus Acad. Sci. Paris 158 (1914), 1869–1872.
[11] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie. J. reine angew. Math. 78 (1874), 46–62.
[12] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory, I. Classical theory. Cambridge Studies in Adv. Math. 97. Cambridge Univ. Press, 2007. MR2378655. | MR | Zbl
[13] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64–94. MR0137689 (25 #1139). | MR | Zbl
[14] J. Sondow and E. W. Weisstein, Mertens’ Theorem. MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/MertensTheorem.html.
Cited by Sources: