We establish automatic realizations of Galois groups among groups , where is a cyclic group of order for a prime and is a quotient of the group ring .
Nous établissons des réalisations automatiques de groupes de Galois parmi les groupes où est un groupe cyclique d’ordre , premier, et un groupe quotient de l’anneau .
Published online:
DOI: 10.5802/jtnb.635
Author's affiliations:
@article{JTNB_2008__20_2_419_0, author = {J\'an Min\'a\v{c} and Andrew Schultz and John Swallow}, title = {Automatic realizations of {Galois} groups with cyclic quotient of order ${p^n}$}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {419--430}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {2}, year = {2008}, doi = {10.5802/jtnb.635}, mrnumber = {2477512}, zbl = {1180.12002}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.635/} }
TY - JOUR TI - Automatic realizations of Galois groups with cyclic quotient of order ${p^n}$ JO - Journal de Théorie des Nombres de Bordeaux PY - 2008 DA - 2008/// SP - 419 EP - 430 VL - 20 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.635/ UR - https://www.ams.org/mathscinet-getitem?mr=2477512 UR - https://zbmath.org/?q=an%3A1180.12002 UR - https://doi.org/10.5802/jtnb.635 DO - 10.5802/jtnb.635 LA - en ID - JTNB_2008__20_2_419_0 ER -
Ján Mináč; Andrew Schultz; John Swallow. Automatic realizations of Galois groups with cyclic quotient of order ${p^n}$. Journal de Théorie des Nombres de Bordeaux, Volume 20 (2008) no. 2, pp. 419-430. doi : 10.5802/jtnb.635. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.635/
[1] F. Anderson, K. Fuller, Rings and categories of modules. Graduate Texts in Mathematics 13. New York: Springer-Verlag, 1973. | MR: 1245487 | Zbl: 0301.16001
[2] H. G. Grundman, T. L. Smith, Automatic realizability of Galois groups of order . Proc. Amer. Math. Soc. 124 (1996), no. 9, 2631–2640. | MR: 1327017 | Zbl: 0862.12005
[3] H. G. Grundman, T. L. Smith, and J. R. Swallow, Groups of order as Galois groups. Exposition. Math. 13 (1995), 289–319. | MR: 1358210 | Zbl: 0838.12004
[4] C. U. Jensen, On the representations of a group as a Galois group over an arbitrary field. Théorie des nombres (Quebec, PQ, 1987), 441–458. Berlin: de Gruyter, 1989. | MR: 1024582 | Zbl: 0696.12019
[5] C. U. Jensen, Finite groups as Galois groups over arbitrary fields. Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), 435–448. Contemp. Math. 131, Part 2. Providence, RI: American Mathematical Society, 1992. | MR: 1175848 | Zbl: 0780.12004
[6] C. U. Jensen, Elementary questions in Galois theory. Advances in algebra and model theory (Essen, 1994; Dresden, 1995), 11–24. Algebra Logic Appl. 9. Amsterdam: Gordon and Breach, 1997. | MR: 1683567 | Zbl: 0939.12001
[7] C. U. Jensen, A. Ledet, N. Yui, Generic polynomials: constructive aspects of the inverse Galois problem. Mathematical Sciences Research Institute Publications 45. Cambridge: Cambridge University Press, 2002. | MR: 1969648 | Zbl: 1042.12001
[8] T. Y. Lam, Lectures on modules and rings. Graduate Texts in Mathematics 189. New York: Springer-Verlag, 1999. | MR: 1653294 | Zbl: 0911.16001
[9] A. Ledet, Brauer type embedding problems. Fields Institute Monographs 21. Providence, RI: American Mathematical Society, 2005. | MR: 2126031 | Zbl: 1064.12003
[10] J. Mináč, J. Swallow, Galois module structure of th-power classes of extensions of degree . Israel J. Math. 138 (2003), 29–42. | MR: 2031948 | Zbl: 1040.12006
[11] J. Mináč, J. Swallow, Galois embedding problems with cyclic quotient of order . Israel J. Math. 145 (2005), 93–112. | MR: 2154722 | Zbl: 1069.12002
[12] J. Mináč, A. Schultz, J. Swallow, Galois module structure of the th-power classes of cyclic extensions of degree . Proc. London Math. Soc. 92 (2006), no. 2, 307–341. | MR: 2205719 | Zbl: pre05014380
[13] D. Saltman, Generic Galois extensions and problems in field theory. Adv. in Math. 43 (1982), 250–283. | MR: 648801 | Zbl: 0484.12004
[14] D. Sharpe, P. Vámos, Injective modules. Cambridge Tracts in Mathematics and Mathematical Physics 62. London: Cambridge University Press, 1972. | MR: 360706 | Zbl: 0245.13001
[15] W. Waterhouse, The normal closures of certain Kummer extensions. Canad. Math. Bull. 37 (1994), no. 1, 133–139. | MR: 1261568 | Zbl: 0794.12003
Cited by Sources: