Conservative polynomials and yet another action of Gal( ¯/) on plane trees
Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 1, pp. 205-218.

In this paper we study an action D of the absolute Galois group Γ=Gal( ¯/) on bicolored plane trees. In distinction with the similar action provided by the Grothendieck theory of “Dessins d’enfants” the action D is induced by the action of Γ on equivalence classes of conservative polynomials which are the simplest examples of postcritically finite rational functions. We establish some basic properties of the action D and compare it with the Grothendieck action.

Dans cet article nous étudions une action D du groupe de Galois absolu Γ=Gal( ¯/) sur des arbres planaires bicolores. A l’encontre de l’action similaire fournie par la théorie des “dessins d’enfants” de Grothendieck, l’action D est induite par l’action de Γ sur des classes d’équivalence de polynômes conservateurs qui sont les exemples les plus simples de fonctions rationnelles finies postcritiques. Nous établissons les propriétés principales de l’action D et la comparons avec l’action de Grothendieck.

DOI: 10.5802/jtnb.622
Fedor Pakovich 1

1 Department of Mathematics Ben Gurion University Beer Sheva 84105 P.O.B. 653, , Israel
@article{JTNB_2008__20_1_205_0,
     author = {Fedor Pakovich},
     title = {Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {205--218},
     publisher = {Universit\'e Bordeaux 1},
     volume = {20},
     number = {1},
     year = {2008},
     doi = {10.5802/jtnb.622},
     mrnumber = {2434164},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.622/}
}
TY  - JOUR
AU  - Fedor Pakovich
TI  - Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2008
SP  - 205
EP  - 218
VL  - 20
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.622/
DO  - 10.5802/jtnb.622
LA  - en
ID  - JTNB_2008__20_1_205_0
ER  - 
%0 Journal Article
%A Fedor Pakovich
%T Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees
%J Journal de théorie des nombres de Bordeaux
%D 2008
%P 205-218
%V 20
%N 1
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.622/
%R 10.5802/jtnb.622
%G en
%F JTNB_2008__20_1_205_0
Fedor Pakovich. Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees. Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 1, pp. 205-218. doi : 10.5802/jtnb.622. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.622/

[1] G. Belyi, On Galois extensions of a maximal cyclotomic field. Math. USSR, Izv. 14 (1980), 247–256. | MR | Zbl

[2] A. Douady, J. Hubbard, A proof of Thurston’s topological characterization of rational functions. Acta Math. 171, No.2 (1993), 263-297. | Zbl

[3] A. Kostrikin, Conservative polynomials. In “Stud. Algebra Tbilisi”, 115–129, 1984. | Zbl

[4] S. Lando, A. Zvonkin, Graphs on Surfaces and Their Applications. Encyclopedia of Mathematical Sciences 141(II), Berlin: Springer, 2004. | MR | Zbl

[5] K. Pilgrim, Dessins d’enfants and Hubbard trees, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 671–693. | Numdam | Zbl

[6] A. Poirier, On postcritically finite polynomials, part 1: critical portraits. Preprint, arxiv:math. DS/9305207.

[7] A. Poirier, On postcritically finite polynomials, part 2: Hubbard trees. Preprint, arxiv:math. DS/9307235.

[8] L. Schneps, Dessins d’enfants on the Riemann sphere. In “The Grothendieck Theory of Dessins D’enfants” (L. Shneps eds.), Cambridge University Press, London mathematical society lecture notes series 200 (1994), 47–77. | Zbl

[9] J. Silverman, The field of definition for dynamical systems on 1 . Compos. Math. 98, No.3 (1995), 269–304. | Numdam | MR | Zbl

[10] S. Smale, The fundamental theorem of algebra and complexity theory. Bull. Amer. Math. Soc. 4 (1981), 1–36. | MR | Zbl

[11] D. Tischler, Critical points and values of complex polynomials. J. of Complexity 5 (1989), 438–456. | MR | Zbl

Cited by Sources: