In this paper, we use Baker’s method, based on linear forms of logarithms, to solve a family of Thue equations associated with a family of number fields of degree 3. We obtain all solutions to the Thue equation
for .
Dans cet article, nous utilisons la méthode de Baker, basée sur les formes linéaires en logarithmes, pour résoudre une famille d’équations de Thue liée à une famille de corps de nombres de degré 3. Nous obtenons toutes les solutions de l’équation de Thue
pour .
@article{JTNB_2006__18_1_285_0, author = {Alain Togb\'e}, title = {Complete solutions of a family of cubic {Thue} equations}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {285--298}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {1}, year = {2006}, doi = {10.5802/jtnb.544}, zbl = {05070458}, mrnumber = {2245886}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.544/} }
TY - JOUR TI - Complete solutions of a family of cubic Thue equations JO - Journal de Théorie des Nombres de Bordeaux PY - 2006 DA - 2006/// SP - 285 EP - 298 VL - 18 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.544/ UR - https://zbmath.org/?q=an%3A05070458 UR - https://www.ams.org/mathscinet-getitem?mr=2245886 UR - https://doi.org/10.5802/jtnb.544 DO - 10.5802/jtnb.544 LA - en ID - JTNB_2006__18_1_285_0 ER -
Alain Togbé. Complete solutions of a family of cubic Thue equations. Journal de Théorie des Nombres de Bordeaux, Volume 18 (2006) no. 1, pp. 285-298. doi : 10.5802/jtnb.544. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.544/
[1] A. Baker, Contribution to the theory of Diophantine equations. I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173–191. | MR: 228424 | Zbl: 0157.09702
[2] T. Cusick, Lower bounds for regulators. In “Number Theory, Noordwijkerhout, 1983,” Lecture Notes in Mathematics, Vol. 1068, pp. 63–73, Springer-Verlag, Berlin/New York, 1984. | MR: 756083 | Zbl: 0549.12003
[3] M. Daberkow, C. Fieker, J. Kluners, M. E. Pohst, K, Roegner, K. Wildanger, Kant V4. J. Symbolic Comput. 24 (1997) 267-283. | MR: 1484479 | Zbl: 0886.11070
[4] C. Heuberger, A. Togbé, V. Ziegler, Automatic solution of families of Thue equations and an example of degree 8. J. Symbolic Computation 38 (2004), 145–163. | MR: 2093887
[5] Y. Kishi, A family of cyclic cubic polynomials whose roots are systems of fundamental units. J. Number Theory 102 (2003), 90–106. | MR: 1994474 | Zbl: 1034.11060
[6] M. Mignotte, Verification of a conjecture of E. Thomas. J. Number Theory 44 (1993), 172–177. | MR: 1225951 | Zbl: 0780.11013
[7] M. Pohst, H. Zassenhaus, Algorithmic algebraic number theory. Cambridge University Press, Cambridge, 1989. | MR: 1033013 | Zbl: 0685.12001
[8] E. Thomas, Complete solutions to a family of cubic Diophantine equations. J. Number Theory 34 (1990), 235–250. | MR: 1042497 | Zbl: 0697.10011
[9] A. Thue, Über Annäherungswerte algebraischer Zahlen. J. reine angew. Math. 135, 284-305.
[10] A. Togbé, A parametric family of cubic Thue equations. J. Number Theory 107 (2004), 63–79. | MR: 2059950 | Zbl: 1065.11017
Cited by Sources: