In this paper, we use Baker’s method, based on linear forms of logarithms, to solve a family of Thue equations associated with a family of number fields of degree 3. We obtain all solutions to the Thue equation
Dans cet article, nous utilisons la méthode de Baker, basée sur les formes linéaires en logarithmes, pour résoudre une famille d’équations de Thue liée à une famille de corps de nombres de degré 3. Nous obtenons toutes les solutions de l’équation de Thue
@article{JTNB_2006__18_1_285_0, author = {Alain Togb\'e}, title = {Complete solutions of a family of cubic {Thue} equations}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {285--298}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {1}, year = {2006}, doi = {10.5802/jtnb.544}, mrnumber = {2245886}, zbl = {05070458}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.544/} }
TY - JOUR AU - Alain Togbé TI - Complete solutions of a family of cubic Thue equations JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 285 EP - 298 VL - 18 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.544/ DO - 10.5802/jtnb.544 LA - en ID - JTNB_2006__18_1_285_0 ER -
%0 Journal Article %A Alain Togbé %T Complete solutions of a family of cubic Thue equations %J Journal de théorie des nombres de Bordeaux %D 2006 %P 285-298 %V 18 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.544/ %R 10.5802/jtnb.544 %G en %F JTNB_2006__18_1_285_0
Alain Togbé. Complete solutions of a family of cubic Thue equations. Journal de théorie des nombres de Bordeaux, Volume 18 (2006) no. 1, pp. 285-298. doi : 10.5802/jtnb.544. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.544/
[1] A. Baker, Contribution to the theory of Diophantine equations. I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173–191. | MR | Zbl
[2] T. Cusick, Lower bounds for regulators. In “Number Theory, Noordwijkerhout, 1983,” Lecture Notes in Mathematics, Vol. 1068, pp. 63–73, Springer-Verlag, Berlin/New York, 1984. | MR | Zbl
[3] M. Daberkow, C. Fieker, J. Kluners, M. E. Pohst, K, Roegner, K. Wildanger, Kant V4. J. Symbolic Comput. 24 (1997) 267-283. | MR | Zbl
[4] C. Heuberger, A. Togbé, V. Ziegler, Automatic solution of families of Thue equations and an example of degree 8. J. Symbolic Computation 38 (2004), 145–163. | MR
[5] Y. Kishi, A family of cyclic cubic polynomials whose roots are systems of fundamental units. J. Number Theory 102 (2003), 90–106. | MR | Zbl
[6] M. Mignotte, Verification of a conjecture of E. Thomas. J. Number Theory 44 (1993), 172–177. | MR | Zbl
[7] M. Pohst, H. Zassenhaus, Algorithmic algebraic number theory. Cambridge University Press, Cambridge, 1989. | MR | Zbl
[8] E. Thomas, Complete solutions to a family of cubic Diophantine equations. J. Number Theory 34 (1990), 235–250. | MR | Zbl
[9] A. Thue, Über Annäherungswerte algebraischer Zahlen. J. reine angew. Math. 135, 284-305.
[10] A. Togbé, A parametric family of cubic Thue equations. J. Number Theory 107 (2004), 63–79. | MR | Zbl
Cited by Sources: