On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes
Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 559-573.

Nous donnons des majorants explicites des résidus au point s=1 des fonctions zêta ζ K (s) des corps de nombres tenant compte du comportement des petits nombres premiers dans K. Dans le cas où K est abélien, de telles majorations sont déduites de majorations de |L(1,χ)| tenant compte du comportement de χ sur les petits nombres premiers, pour χ un caractère de Dirichlet primitif. De nombreuses applications sont données pour illustrer l’utilité de tels majorants.

Lately, explicit upper bounds on |L(1,χ)| (for primitive Dirichlet characters χ) taking into account the behaviors of χ on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds of relative class numbers of CM-fields whose maximal totally real subfields are abelian. We present here some other applications of such bounds together with new bounds for non-abelian number fields.

Publié le :
DOI : https://doi.org/10.5802/jtnb.508
Mots clés : L-functions, Dedekind zeta functions, number fields, class number.
@article{JTNB_2005__17_2_559_0,
     author = {St\'ephane Louboutin},
     title = {On the use of explicit bounds on residues of {Dedekind} zeta functions taking into account the behavior of small primes},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {559--573},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {2},
     year = {2005},
     doi = {10.5802/jtnb.508},
     zbl = {1091.11039},
     mrnumber = {2211308},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.508/}
}
TY  - JOUR
AU  - Stéphane Louboutin
TI  - On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
DA  - 2005///
SP  - 559
EP  - 573
VL  - 17
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.508/
UR  - https://zbmath.org/?q=an%3A1091.11039
UR  - https://www.ams.org/mathscinet-getitem?mr=2211308
UR  - https://doi.org/10.5802/jtnb.508
DO  - 10.5802/jtnb.508
LA  - en
ID  - JTNB_2005__17_2_559_0
ER  - 
Stéphane Louboutin. On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 559-573. doi : 10.5802/jtnb.508. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.508/

[Bes] S. Bessassi, Bounds for the degrees of CM-fields of class number one. Acta Arith. 106 (2003), 213–245. | MR 1957106 | Zbl 01927449

[BHM] Y. Bugeaud, G. Hanrot, M. Mignotte, Sur l’équation diophantienne (x n -1)/(x-1)=y q . III. Proc. London Math. Soc. (3) 84 (2002), 59–78. | Zbl 01696354

[BL02] G. Boutteaux, S. Louboutin, The class number one problem for some non-normal sextic CM-fields. Part 2. Acta Math. Inform. Univ. Ostraviensis 10 (2002), 3–23. | MR 1943019 | Zbl 1042.11070

[Boo] A. R. Booker, Quadratic class numbers and characters sums. Math. Comp., to appear. | MR 2219039 | Zbl 1095.11057

[CL] H. Cohen, H. W. Lenstra, Heuristics on class groups of number fields. Lecture Notes in Math. 1068 (1984), 33–62. | MR 756082 | Zbl 0558.12002

[CW] G. Cornell, L. C. Washington, Class numbers of cyclotomic fields. J. Number Theory 21 (1985), 260–274. | MR 814005 | Zbl 0582.12005

[JWW] M. J. Jacobson, H. C. Williams, K. Wooding, Imaginary cyclic quartic fileds with large minus class numbers. Algorithmic Number Theory (University of Vermont, 2004), Lectures Notes in Computer Science 3076 (2004), 280–292. | MR 2137361 | Zbl 02194083

[Laz1] A. J. Lazarus, Class numbers of simplest quartic fields. Number theory (Banff, AB, 1988), 313–323, Walter de Gruyter, Berlin, 1990. | MR 1106670 | Zbl 0712.11061

[Laz2] A. J. Lazarus, On the class number and unit index of simplest quartic fields. Nagoya Math. J. 121 (1991), 1–13. | MR 1096465 | Zbl 0719.11073

[Le] M. Le, Upper bounds for class numbers of real quadratic fields. Acta Arith. 68 (1994), 141–144. | MR 1305196 | Zbl 0816.11055

[LK] G.-N. Lee, S.-H. Kwon, CM-fields with relative class number one. Math. Comp., to appear. | MR 2197004 | Zbl 05015505

[Lou95] S. Louboutin, Determination of all non-quadratic imaginary cyclic number fields of 2-power degrees with ideal class groups of exponents 2. Math. Comp. 64 (1995), 323–340. | MR 1248972 | Zbl 0822.11072

[Lou97] S. Louboutin, CM-fields with cyclic ideal class groups of 2-power orders. J. Number Theory 67 (1997), 1–10. | MR 1485424 | Zbl 0881.11078

[Lou98] S. Louboutin, Computation of relative class numbers of imaginary abelian number fields. Experimental Math. 7 (1998), 293–303. | MR 1678103 | Zbl 0929.11065

[Lou01] S. Louboutin, Explicit upper bounds for residues of Dedekind zeta functions and values of L-functions at s=1, and explicit lower bounds for relative class numbers of CM-fields. Canad. J. Math. 53 (2001), 1194–1222. | MR 1863848 | Zbl 0998.11066

[Lou03] S. Louboutin, Explicit lower bounds for residues at s=1 of Dedekind zeta functions and relative class numbers of CM-fields. Trans. Amer. Math. Soc. 355 (2003), 3079–3098. | MR 1974676 | Zbl 1026.11085

[Lou02a] S. Louboutin, Efficient computation of class numbers of real abelian number fields. Lectures Notes in Computer Science 2369 (2002), 625–628. | MR 2041079 | Zbl 1067.11081

[Lou04a] S. Louboutin, Explicit upper bounds for values at s=1 of Dirichlet L-series associated with primitive even characters. J. Number Theory 104 (2004), 118–131. | MR 2021629 | Zbl 1044.11082

[Lou02b] S. Louboutin, Computation of class numbers of quadratic number fields. Math. Comp. 71 (2002), 1735–1743. | MR 1933052 | Zbl 1030.11079

[Lou04b] S. Louboutin, The simplest quartic fields with ideal class groups of exponents 2. J. Math. Soc. Japan 56 (2004), 717–727. | MR 2071669 | Zbl 02111271

[Lou02c] S. Louboutin, The exponent three class group problem for some real cyclic cubic number fields. Proc. Amer. Math. Soc. 130 (2002), 353–361. | MR 1862112 | Zbl 0999.11068

[Lou04c] S. Louboutin, Class numbers of real cyclotomic fields. Publ. Math. Debrecen 64 (2004), 451–461. | MR 2058916 | Zbl 1072.11081

[Lou04d] S. Louboutin, Explicit upper bounds for |L(1,χ)| for primitive characters χ. Quart. J. Math. 55 (2004), 57–68. | MR 2043007 | Zbl 1065.11063

[Mos] C. Moser, Nombre de classes d’une extension cyclique réelle de Q de degré 4 ou 6 et de conducteur premier. Math. Nachr. 102 (1981), 45–52. | Zbl 0506.12003

[MP] C. Moser, J.-J. Payan, Majoration du nombre de classes d’un corps cubique de conducteur premier. J. Math. Soc. Japan 33 (1981), 701–706. | Zbl 0456.12004

[MR] M. Mignotte, Y. Roy, Minorations pour l’équation de Catalan. C. R. Acad. Sci. Paris 324 (1997), 377–380. | Zbl 0887.11018

[Odl] A. Odlyzko, Some analytic estimates of class numbers and discriminants. Invent. Math. 29 (1975), 275–286. | MR 376613 | Zbl 0306.12005

[Ram01] O. Ramaré, Approximate formulae for L(1,χ). Acta Arith. 100 (2001), 245–266. | MR 1865385 | Zbl 0985.11037

[Ram04] O. Ramaré, Approximate formulae for |L(1,χ)|. II. Acta Arith. 112 (2004), 141–149. | MR 2051374 | Zbl 1053.11073

[SSW] R. G. Stanton, C. Sudler, H. C. Williams, An upper bound for the period of the simple continued fraction for D. Pacific J. Math. 67 (1976), 525–536. | MR 429724 | Zbl 0346.10005

[Sta] H. M. Stark, Some effective cases of the Brauer-Siegel Theorem. Invent. Math. 23 (1974), 135–152. | MR 342472 | Zbl 0278.12005

[Ste] R. Steiner, Class number bounds and Catalan’s equation. Math. Comp. 67 (1998), 1317–1322. | Zbl 0897.11009

[SWW] E. Seah, L. C. Washington, H. C. Williams, The calculation of a large cubic class number with an application to real cyclotomic fields. Math. Comp. 41 (1983), 303–305. | MR 701641 | Zbl 0527.12004

[Wa] L. C. Washington, Class numbers of the simplest cubic fields. Math. Comp. 48 (1987), 371–384. | MR 866122 | Zbl 0613.12002

[WB] H. C. Williams, J. Broere, A computational technique for evaluating L(1,χ) and the class number of a real quadratic field. Math. Comp. 30 (1976), 887–893. | MR 414522 | Zbl 0345.12004

Cité par Sources :