On the Euclidean minimum of some real number fields
Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 437-454.

Le but de cet article est de donner des bornes pour le minimum euclidien des corps quadratiques réels et des corps cyclotomiques réels dont le conducteur est une puissance d’un nombre premier.

General methods from [3] are applied to give good upper bounds on the Euclidean minimum of real quadratic fields and totally real cyclotomic fields of prime power discriminant.

@article{JTNB_2005__17_2_437_0,
     author = {Eva Bayer-Fluckiger and Gabriele Nebe},
     title = {On the {Euclidean} minimum of some real number fields},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {437--454},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {2},
     year = {2005},
     doi = {10.5802/jtnb.500},
     zbl = {1161.11032},
     mrnumber = {2211300},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/}
}
TY  - JOUR
AU  - Eva Bayer-Fluckiger
AU  - Gabriele Nebe
TI  - On the Euclidean minimum of some real number fields
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
DA  - 2005///
SP  - 437
EP  - 454
VL  - 17
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/
UR  - https://zbmath.org/?q=an%3A1161.11032
UR  - https://www.ams.org/mathscinet-getitem?mr=2211300
UR  - https://doi.org/10.5802/jtnb.500
DO  - 10.5802/jtnb.500
LA  - en
ID  - JTNB_2005__17_2_437_0
ER  - 
Eva Bayer-Fluckiger; Gabriele Nebe. On the Euclidean minimum of some real number fields. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 437-454. doi : 10.5802/jtnb.500. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/

[1] E. Bayer-Fluckiger, Lattices and number fields. Contemp. Math. 241 (1999), 69–84. | MR 1718137 | Zbl 0951.11016

[2] E. Bayer-Fluckiger, Ideal lattices. A panorama of number theory or the view from Baker’s garden (Zürich, 1999), 168–184, Cambridge Univ. Press, Cambridge, 2002. | Zbl 1043.11057

[3] E. Bayer-Fluckiger, Upper bounds for Euclidean minima. J. Number Theory (to appear). | MR 2274907 | Zbl 05118763

[4] J.W.S. Cassels, An introduction to the geometry of numbers. Springer Grundlehren 99 (1971). | MR 306130 | Zbl 0209.34401

[5] J.H. Conway, N.J.A. Sloane, Low Dimensional Lattices VI: Voronoi Reduction of Three-Dimensional Lattices. Proc. Royal Soc. London, Series A 436 (1992), 55–68. | MR 1177121 | Zbl 0747.11027

[6] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups. Springer Grundlehren 290 (1988). | MR 920369 | Zbl 0634.52002

[7] P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers. North Holland (second edition, 1987) | MR 893813 | Zbl 0611.10017

[8] The KANT Database of fields.

[9] F. Lemmermeyer, The Euclidean algorithm in algebraic number fields. Expo. Math. 13 (1995), 385–416. (updated version available via ). | MR 1362867 | Zbl 0843.11046

[10] C.T. McMullen, Minkowski’s conjecture, well-rounded lattices and topological dimension., Journal of the American Mathematical Society 18 (3) (2005), 711–734. | Zbl 02172231

[11] R. Quême, A computer algorithm for finding new euclidean number fields. J. Théorie de Nombres de Bordeaux 10 (1998), 33–48. | EuDML 248166 | Numdam | MR 1827284 | Zbl 0913.11056

[12] E. Weiss, Algebraic number theory. McGraw-Hill Book Company (1963). | MR 159805 | Zbl 0115.03601

[13] M. Dutour, A. Schürmann, F. Vallentin, A Generalization of Voronoi’s Reduction Theory and Applications, (preprint 2005). | Zbl 1186.11040

Cité par Sources :