Multiplicative Dedekind η-function and representations of finite groups
Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 359-380.

Dans cet article, nous étudions le problème de trouver des groupes finis tels que les formes modulaires associées aux éléments de ces groupes au moyen de certaines représentations fidèles appartiennent à des classes particulières de formes modulaires (appelées produits η multiplicatifs). Ce problème est ouvert.

Nous trouvons des groupes métacycliques ayant cette propriété et décrivons les p-sous-groupes de Sylow, p2, de tels groupes. Nous donnons également un aperçu des résulats reliant les produits η multiplicatifs et les éléments d’ordre fini de SL(5,).

In this article we study the problem of finding such finite groups that the modular forms associated with all elements of these groups by means of a certain faithful representation belong to a special class of modular forms (so-called multiplicative η-products). This problem is open.

We find metacyclic groups with such property and describe the Sylow p-subgroups, p2, for such groups. We also give a review of the results about the connection between multiplicative η-products and elements of finite orders in SL(5,).

@article{JTNB_2005__17_1_359_0,
     author = {Galina Valentinovna Voskresenskaya},
     title = {Multiplicative {Dedekind} $\eta $-function and representations of finite groups},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {359--380},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.495},
     zbl = {1093.11028},
     mrnumber = {2152229},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.495/}
}
TY  - JOUR
AU  - Galina Valentinovna Voskresenskaya
TI  - Multiplicative Dedekind $\eta $-function and representations of finite groups
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
DA  - 2005///
SP  - 359
EP  - 380
VL  - 17
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.495/
UR  - https://zbmath.org/?q=an%3A1093.11028
UR  - https://www.ams.org/mathscinet-getitem?mr=2152229
UR  - https://doi.org/10.5802/jtnb.495
DO  - 10.5802/jtnb.495
LA  - en
ID  - JTNB_2005__17_1_359_0
ER  - 
Galina Valentinovna Voskresenskaya. Multiplicative Dedekind $\eta $-function and representations of finite groups. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 359-380. doi : 10.5802/jtnb.495. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.495/

[1] A.J.F. Biagioli, The construction of modular forms as products of transforms of the Dedekind eta-function. Acta Arith. LIV (1990), 274–300. | MR 1058891 | Zbl 0718.11017

[2] H.S.M. Coxeter, W.O.J. Moser, Generators and relations for discrete groups. Springer-Verlag (1965), 161 pp. | MR 174618 | Zbl 0133.28002

[3] D. Dummit, H. Kisilevsky, J. McKay, Multiplicative products of η-functions. Contemp. Math. 45 (1985), 89–98. | Zbl 0578.10028

[4] B. Gordon, S. Sinor, Multiplicative properties of η-products. Lecture Notes in Math. 1395 (1989), 173–200. (Springer-Verlag) | Zbl 0688.10023

[5] M. Hall,jr, The theory of groups. The Macmillan Company. New York (1959). | MR 103215 | Zbl 0084.02202

[6] K. Harada, Another look at the Frame shapes of finite groups. J. Fac. Sci. Univ. Tokyo. Sect. IA. Math. 34 (1987), 491–512. | MR 927599 | Zbl 0653.10024

[7] T. Hiramatsu Theory of automorphic forms of weight 1. Advanced Studies in Pure Math. 13 (1988), 503–584. | MR 971528 | Zbl 0658.10031

[8] N. Ishii, Cusp forms of weight one, quartic reciprocity and elliptic curves. Nagoya Math. J. 98 (1985), 117–137. | MR 792776 | Zbl 0556.10019

[9] M. Koike, On McKay’s conjecture. Nagoya Math. J. 95 (1984), 85–89. | MR 759465 | Zbl 0548.10018

[10] T. Kondo, Examples of multiplicative η-products. Sci. Pap. Coll. Arts and Sci. Univ. Tokyo 35 (1986), 133–149 . | Zbl 0597.10025

[11] Y. Martin, K. Ono, Eta-quotients and elliptic curves. Proc. Amer. Math. Soc. 125 (1997), 3169–3176. | MR 1401749 | Zbl 0894.11020

[12] G. Mason, Finite groups and Hecke operators. Math. Ann. 282 (1989), 381–409. | MR 985239 | Zbl 0636.10021

[13] G. Mason, M 24 and certain automorphic forms. Contemp. Math. 45 (1985), 223–244. | MR 822240 | Zbl 0578.10029

[14] K. Ono, Shimura sums related to imaginary quadratic fields. Proc. Japan Acad. 70 (A) (1994), 146–151. | MR 1291170 | Zbl 0813.11031

[15] G.V. Voskresenskaya, Modular forms and representations of the dihedral group. Math. Notes. 63 (1998), 130–133. | MR 1631789 | Zbl 0923.11070

[16] G.V. Voskresenskaya, Cusp forms and finite subgroups in SL(5,). Functional Anal. Appl. 29 (1995), 71–73. | MR 1340307 | Zbl 0847.11022

[17] G.V. Voskresenskaya, Modular forms and regular representations of groups of order 24. Math. Notes 60 (1996), 292–294. | MR 1429128 | Zbl 0923.11069

[18] G.V. Voskresenskaya, One special class of modular forms and group representations. J. Th. Nombres Bordeaux 11(1999), 247–262. | Numdam | MR 1730443 | Zbl 0954.11014

[19] G.V. Voskresenskaya, Metacyclic groups and modular forms. Math. Notes. 67 (2000), 18–25. | MR 1768418 | Zbl 0972.11031

[20] G.V. Voskresenskaya, Finite groups and multiplicative η-products. Vestnik SamGU 16 (2000), 18–25. | Zbl 1077.11033

[21] G.V. Voskresenskaya, Abelian groups and modular forms Vestnik SamGU 28 (2003), 21–34. | MR 2123282 | Zbl 1058.11032

[22] G.V. Voskresenskaya, Multiplicative products of Dedekind η-functions and group representations. Math. Notes. 73 (2003), 482–495. | Zbl 02115593

Cité par Sources :