We show that for all integers and there are no non-trivial solutions of Thue equation
satisfying the additional condition .
Nous montrons que pour tous les entiers et , il n’y a pas de solution non triviale de l’équation de Thue
satisfaisant la condition supplémentaire .
@article{JTNB_2005__17_1_161_0, author = {Borka Jadrijevi\'c}, title = {On two-parametric family of quartic {Thue} equations}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {161--167}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.483}, zbl = {1162.11327}, mrnumber = {2152217}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.483/} }
TY - JOUR TI - On two-parametric family of quartic Thue equations JO - Journal de Théorie des Nombres de Bordeaux PY - 2005 DA - 2005/// SP - 161 EP - 167 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.483/ UR - https://zbmath.org/?q=an%3A1162.11327 UR - https://www.ams.org/mathscinet-getitem?mr=2152217 UR - https://doi.org/10.5802/jtnb.483 DO - 10.5802/jtnb.483 LA - en ID - JTNB_2005__17_1_161_0 ER -
Borka Jadrijević. On two-parametric family of quartic Thue equations. Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 161-167. doi : 10.5802/jtnb.483. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.483/
[1] A. Baker, Contributions to the theory of Diophantine equations I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173–191. | MR: 228424 | Zbl: 0157.09702
[2] A. Baker, H. Davenport, The equations and . Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. | MR: 248079 | Zbl: 0177.06802
[3] A. Baker, G. Wüstholz, Logarithmic forms and group varieties. J. Reine Angew. Math. 442 (1993), 19–62. | MR: 1234835 | Zbl: 0788.11026
[4] M. A. Bennett, On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498 (1998), 173–199. | MR: 1629862 | Zbl: 1044.11011
[5] Yu. Bilu, G. Hanrot, Solving Thue equations of high degree. J. Number Theory, 60 (1996), 373–392. | MR: 1412969 | Zbl: 0867.11017
[6] J. H. Chen, P. M. Voutier, Complete solution of the Diophantine equation and a related family of Thue equations. J. Number Theory 62 (1996), 273–292. | Zbl: 0869.11025
[7] A. Dujella, B. Jadrijević, A parametric family of quartic Thue equations. Acta Arith. 101 (2002), 159–170. | MR: 1880306 | Zbl: 0987.11017
[8] A. Dujella, B. Jadrijević, A family of quartic Thue inequalities. To appear in Acta Arith. | Zbl: 1050.11036
[9] A. Dujella, A. Pethő, A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306. | MR: 1645552 | Zbl: 0911.11018
[10] C. Heuberger, A. Pethő, R. F. Tichy, Complete solution of parametrized Thue equations. Acta Math. Inform. Univ. Ostraviensis 6 (1998), 93–113. | MR: 1822519 | Zbl: 1024.11017
[11] B. Jadrijević, A two-parametric family of quartic Thue equations. PhD thesis, University of Zagreb, 2001. (in Croatian)
[12] B. Jadrijević, A system of Pellian equations and related two-parametric family of quartic Thue equations. Rocky Mountain J. Math. 35 no. 2 (2005), 547–571. | MR: 2135585 | Zbl: 02207756
[13] G. Lettl, A. Pethő, Complete solution of a family of quartic Thue equations. Abh. Math. Sem. Univ. Hamburg 65 (1995), 365–383. | MR: 1359142 | Zbl: 0853.11021
[14] W. Ljunggren, Über die Gleichung . Arch. Math. Naturvid. 45 (1942), 1–12. | MR: 12619 | Zbl: 0026.29604
[15] M. Mignotte, A. Pethő, R. Roth, Complete solutions of quartic Thue and index form equations. Math. Comp. 65 (1996), 341–354. | MR: 1316596 | Zbl: 0853.11022
[16] A. Pethő, Complete solutions to families of quartic Thue equations. Math. Comp. 57 (1991), 777–798. | MR: 1094956 | Zbl: 0738.11028
[17] A. Pethő, R. Schulenberg, Effectives Lösen von Thue Gleichungen. Publ. Math. Debrecen 34 (1987), 189–196. | MR: 934900 | Zbl: 0657.10015
[18] A. Pethő, R. T. Tichy, On two-parametric quartic families of Diophantine problems. J. Symbolic Comput. 26 (1998), 151–171. | MR: 1635234 | Zbl: 0926.11016
[19] E. Thomas, Complete solutions to a family of cubic Diophantine equations. J. Number Theory 34 (1990), 235–250. | MR: 1042497 | Zbl: 0697.10011
[20] A. Thue, Über Annäherungswerte algebraischer Zahlen. J. Reine Angew. Math. 135 (1909), 284–305.
[21] A. Togbé, On the solutions of a family of quartic Thue equations. Math. Comp. 69 (2000), 839–849. | MR: 1648411 | Zbl: 0963.11018
[22] N. Tzanakis, Explicit solution of a class of quartic Thue equations. Acta Arith. 64 (1993), 271–283. | MR: 1225429 | Zbl: 0774.11014
[23] N. Tzanakis, B. M. M. de Weger, On the practical solution of the Thue equation. J. Number Theory 31 (1989), 99–132. | MR: 987566 | Zbl: 0657.10014
[24] I. Wakabayashi, On a family of quartic Thue inequalities. J. Number Theory 66 (1997), 70–84. | MR: 1467190 | Zbl: 0884.11021
[25] I. Wakabayashi, On a family of quartic Thue inequalities, II. J. Number Theory 80 (2000), 60–88. | MR: 1735648 | Zbl: 1047.11030
[26] P. G. Walsh, A note a theorem of Ljunggren and the Diophantine equations . Arch Math. 73, No.2, (1999), 119–125. | MR: 1703679 | Zbl: 0941.11012
Cited by Sources: