Critical and ramification points of the modular parametrization of an elliptic curve
Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 109-124.

Let E be an elliptic curve defined over with conductor N and denote by ϕ the modular parametrization:

ϕ:X0(N)E().

In this paper, we are concerned with the critical and ramification points of ϕ. In particular, we explain how we can obtain a more or less experimental study of these points.

Soit E une courbe elliptique définie sur de conducteur N et soit ϕ son revêtement modulaire :

ϕ:X0(N)E().

Dans cet article, nous nous intéressons aux points critiques et aux points de ramification de ϕ. En particulier, nous expliquons comment donner une étude plus ou moins expérimentale de ces points.

Published online:
DOI: 10.5802/jtnb.480
Christophe Delaunay 1

1 Institut Camille Jordan Bâtiment Braconnier Université Claude Bernard Lyon 1 43, avenue du 11 novembre 1918 69622 Villeurbanne cedex, France
@article{JTNB_2005__17_1_109_0,
     author = {Christophe Delaunay},
     title = {Critical and ramification points of the modular parametrization of an elliptic curve},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {109--124},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.480},
     zbl = {1082.11033},
     mrnumber = {2152214},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.480/}
}
TY  - JOUR
TI  - Critical and ramification points of the modular parametrization of an elliptic curve
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
DA  - 2005///
SP  - 109
EP  - 124
VL  - 17
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.480/
UR  - https://zbmath.org/?q=an%3A1082.11033
UR  - https://www.ams.org/mathscinet-getitem?mr=2152214
UR  - https://doi.org/10.5802/jtnb.480
DO  - 10.5802/jtnb.480
LA  - en
ID  - JTNB_2005__17_1_109_0
ER  - 
%0 Journal Article
%T Critical and ramification points of the modular parametrization of an elliptic curve
%J Journal de Théorie des Nombres de Bordeaux
%D 2005
%P 109-124
%V 17
%N 1
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.480
%R 10.5802/jtnb.480
%G en
%F JTNB_2005__17_1_109_0
Christophe Delaunay. Critical and ramification points of the modular parametrization of an elliptic curve. Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 109-124. doi : 10.5802/jtnb.480. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.480/

[1] A.O.L. Atkin, J. Lehner, Hecke operators on Γ 0 (N). Math. Ann. 185 (1970), 134–160. | Zbl: 0177.34901

[2] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, pari-gp, available at

[3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over : wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic). | MR: 1839918 | Zbl: 0982.11033

[4] B. Birch, Heegner points of elliptic curves. Symp. Math. Inst. Alta. Math. 15 (1975), 441–445. | MR: 384805 | Zbl: 0317.14015

[5] H. Cohen, A course in computational algebraic number theory. Graduate Texts in Math. 138, Springer-Verlag, New-York, 4-th corrected printing (2000). | MR: 1228206 | Zbl: 0786.11071

[6] J. Cremona, Algorithms for modular elliptic curves. Cambridge University Press, (1997) second edition. | MR: 1628193 | Zbl: 0758.14042

[7] J. Cremona, Elliptic curve data for conductors up to 25000. Available at

[8] C. Delaunay, Computing modular degrees using L-functions. Journ. theo. nomb. Bord. 15 (3) (2003), 673–682. | Numdam | MR: 2142230 | Zbl: 1070.11021

[9] B. Gross, Heegner points on X 0 (N). Modular Forms, ed. R. A. Ramkin, (1984), 87–105. | MR: 803364 | Zbl: 0559.14011

[10] B. Gross, D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84 (1986), 225–320. | MR: 833192 | Zbl: 0608.14019

[11] B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves. Invent. Math. 25 (1974), 1–61. | MR: 354674 | Zbl: 0281.14016

[12] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Math. Soc of Japan 11, Princeton university Press (1971). | MR: 1291394 | Zbl: 0221.10029

[13] N. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms. Inv. Math. 98 (1988), 113–146. | MR: 958592 | Zbl: 0651.10020

[14] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553–572. | MR: 1333036 | Zbl: 0823.11030

[15] M. Watkins, Computing the modular degree. Exp. Math. 11 (4) (2002), 487–502. | MR: 1969641 | Zbl: 05032284

[16] A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), no.3, 443–551. | MR: 1333035 | Zbl: 0823.11029

[17] D. Zagier, Modular parametrizations of elliptic curves. Canad. Math. Bull. 28 (3) (1985), 372–384. | MR: 790959 | Zbl: 0579.14027

Cited by Sources: