Catalan without logarithmic forms (after Bugeaud, Hanrot and Mihăilescu)
Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 69-85.

This is an exposition of the recent work of Bugeaud, Hanrot and Mihăilescu showing that Catalan’s conjecture can be proved without using logarithmic forms and electronic computations.

C’est un rapport sur le travail récent de Bugeaud, Hanrot et Mihăilescu, montrant qu’on peut démontrer l’hypothèse de Catalan sans utiliser les formes logarithmiques, ni le calcul avec un ordinateur.

Published online:
DOI: 10.5802/jtnb.478
Yuri F. Bilu 1

1 A2X, Université Bordeaux 1 351 cours de la Libération 33405 Talence France
@article{JTNB_2005__17_1_69_0,
     author = {Yuri F. Bilu},
     title = {Catalan without logarithmic forms (after {Bugeaud,} {Hanrot} and {Mih\u{a}ilescu)}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {69--85},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.478},
     zbl = {1080.11030},
     mrnumber = {2152212},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.478/}
}
TY  - JOUR
TI  - Catalan without logarithmic forms (after Bugeaud, Hanrot and Mihăilescu)
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2005
DA  - 2005///
SP  - 69
EP  - 85
VL  - 17
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.478/
UR  - https://zbmath.org/?q=an%3A1080.11030
UR  - https://www.ams.org/mathscinet-getitem?mr=2152212
UR  - https://doi.org/10.5802/jtnb.478
DO  - 10.5802/jtnb.478
LA  - en
ID  - JTNB_2005__17_1_69_0
ER  - 
%0 Journal Article
%T Catalan without logarithmic forms (after Bugeaud, Hanrot and Mihăilescu)
%J Journal de Théorie des Nombres de Bordeaux
%D 2005
%P 69-85
%V 17
%N 1
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.478
%R 10.5802/jtnb.478
%G en
%F JTNB_2005__17_1_69_0
Yuri F. Bilu. Catalan without logarithmic forms (after Bugeaud, Hanrot and Mihăilescu). Journal de Théorie des Nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 69-85. doi : 10.5802/jtnb.478. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.478/

[1] Yu.F. Bilu, Catalan’s conjecture (after Mihăilescu). Séminaire Bourbaki, Exposé 909, 55ème année (2002-2003); Astérisque 294 (2004), 1–26. | MR: 2111637 | Zbl: 02123620

[2] Y. Bugeaud, G. Hanrot, Un nouveau critère pour l’équation de Catalan. Mathematika 47 (2000), 63–73. | MR: 1924488 | Zbl: 1008.11011

[3] J. W. S. Cassels, On the equation a x -b y =1, II. Proc. Cambridge Philos. Society 56 (1960), 97–103. | MR: 114791 | Zbl: 0094.25702

[4] E. Catalan, Note extraite d’une lettre adressée à l’éditeur. J. reine angew. Math. 27 (1844), 192. | Zbl: 027.0790cj

[5] S. Hyyrö, Über das Catalansche Problem. Ann. Univ. Turku Ser. AI 79 (1964), 3–10. | MR: 179127 | Zbl: 0127.01904

[6] P. Kirschenhofer, A. Pethő, R.F. Tichy, On analytical and Diophantine properties of a family of counting polynomials. Acta Sci. Math. (Szeged), 65 (1999), no. 1-2, 47–59. | MR: 1702180 | Zbl: 0983.11013

[7] Ko Chao, On the diophantine equation x 2 =y n +1, xy0. Sci. Sinica 14 (1965), 457–460. | MR: 183684 | Zbl: 0163.04004

[8] E. Kummer Collected papers. Springer, 1975. | MR: 465761 | Zbl: 0327.01019

[9] V.A. Lebesgue, Sur l’impossibilité en nombres entiers de l’équation x m =y 2 +1. Nouv. Ann. Math. 9 (1850), 178–181.

[10] M. Laurent, M. Mignotte, Yu. Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (1995), 285–321. | MR: 1366574 | Zbl: 0843.11036

[11] M. Mignotte, Catalan’s equation just before 2000. Number theory (Turku, 1999), de Gruyter, Berlin, 2001, pp. 247–254. | MR: 1822013 | Zbl: 1065.11019

[12] M. Mignotte, Y. Roy, Catalan’s equation has no new solutions with either exponent less than 10651. Experimental Math. 4 (1995), 259–268. | MR: 1387692 | Zbl: 0857.11012

[13] M. Mignotte, Y. Roy, Minorations pour l’équation de Catalan. C. R. Acad. Sci. Paris 324 (1997), 377–380. | MR: 1440951 | Zbl: 0887.11018

[14] P. Mihăilescu, A class number free criterion for Catalan’s conjecture. J. Number Theory 99 (2003), 225–231. | MR: 1968450 | Zbl: 1049.11036

[15] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture. J. reine angew. Math., to appear. | MR: 2076124 | Zbl: 1067.11017

[16] P. Mihăilescu, On the class groups of cyclotomic extensions in the presence of a solution to Catalan’s equation. A manuscript.

[17] T. Nagell, Des équations indéterminées x 2 +x+1=y n and x 2 +x+1=3y n . Norsk Matem. Forenings Skrifter I, 2 (1921), 14 pp. (See also: Collected papers of Trygve Nagell, ed. P. Ribenboim, Queens Papers in Pure and Applied Mathematics 121, Kingston, 2002; Vol.1, pp. 79–94.)

[18] R. Tijdeman, On the equation of Catalan. Acta Arith. 29 (1976), 197–209. | MR: 404137 | Zbl: 0286.10013

[19] L. Washington, Introduction to Cyclotomic Fields. Second edition, Graduate Texts in Math. 83, Springer, New York, 1997. | MR: 1421575 | Zbl: 0966.11047

Cited by Sources: