A contribution to infinite disjoint covering systems
Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 51-55.

Let the collection of arithmetic sequences {d i n+b i :n} iI be a disjoint covering system of the integers. We prove that if d i =p k q l for some primes p,q and integers k,l0, then there is a ji such that d i |d j . We conjecture that the divisibility result holds for all moduli.

A disjoint covering system is called saturated if the sum of the reciprocals of the moduli is equal to 1. The above conjecture holds for saturated systems with d i such that the product of its prime factors is at most 1254.

Supposons que la famille de suites arithmétiques {d i n+b i :n} iI soit un recouvrement disjoint des nombres entiers. Nous prouvons qui si d i =p k q l pour des nombres premiers p,q et des entiers k,l0, il existe alors un ji tel que d i |d j . On conjecture que le résultat de divisibilité est vrai quelques soient les raisons d i .

Un recouvrement disjoint est appelé saturé si la somme des inverses des raisons est égale à 1. La conjecture ci-dessus est vraie pour des recouvrements saturés avec des d i dont le produit des facteurs premiers n’est pas supérieur à 1254.

DOI: 10.5802/jtnb.476
János Barát 1; Péter P. Varjú 1

1 Bolyai Institute University of Szeged Aradi vértanúk tere 1. Szeged, 6720 Hungary
@article{JTNB_2005__17_1_51_0,
     author = {J\'anos Bar\'at and P\'eter P. Varj\'u},
     title = {A contribution to infinite disjoint covering systems},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {51--55},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.476},
     mrnumber = {2152210},
     zbl = {1079.11008},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.476/}
}
TY  - JOUR
AU  - János Barát
AU  - Péter P. Varjú
TI  - A contribution to infinite disjoint covering systems
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2005
SP  - 51
EP  - 55
VL  - 17
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.476/
DO  - 10.5802/jtnb.476
LA  - en
ID  - JTNB_2005__17_1_51_0
ER  - 
%0 Journal Article
%A János Barát
%A Péter P. Varjú
%T A contribution to infinite disjoint covering systems
%J Journal de théorie des nombres de Bordeaux
%D 2005
%P 51-55
%V 17
%N 1
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.476/
%R 10.5802/jtnb.476
%G en
%F JTNB_2005__17_1_51_0
János Barát; Péter P. Varjú. A contribution to infinite disjoint covering systems. Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 51-55. doi : 10.5802/jtnb.476. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.476/

[1] J. Barát, P.P. Varjú, Partitioning the positive integers to seven Beatty sequences. Indag. Math. 14 (2003), 149–161. | MR | Zbl

[2] A.S. Fraenkel, Complementing and exactly covering sequences. J. Combin. Theory Ser. A 14 (1973), 8–20. | MR | Zbl

[3] A.S. Fraenkel, R.J. Simpson, On infinite disjoint covering systems. Proc. Amer. Math. Soc. 119 (1993), 5–9. | MR | Zbl

[4] R.L. Graham, Covering the positive integers by disjoint sets of the form {[nα+β]:n=1,2,...}. J. Combin Theory Ser. A 15 (1973), 354–358. | Zbl

[5] C.E. Krukenberg, Covering sets of the integers. Ph. D. Thesis, Univ. of Illinois, Urbana-Champaign, IL, (1971)

[6] E. Lewis, Infinite covering systems of congruences which don’t exist. Proc. Amer. Math. Soc. 124 (1996), 355–360. | MR | Zbl

[7] Š. Porubský, J. Schönheim, Covering Systems of Paul Erdős, Past, Present and Future. In Paul Erdős and his Mathematics I., Springer, Budapest, (2002), 581–627. | MR | Zbl

[8] Š. Porubský, Covering systems and generating functions. Acta Arithm. 26 (1975), 223–231. | MR | Zbl

[9] R.J. Simpson, Disjoint covering systems of rational Beatty sequences. Discrete Math. 92 (1991), 361–369. | MR | Zbl

[10] S.K. Stein, Unions of Arithmetic Sequences. Math. Annalen 134 (1958), 289–294. | MR | Zbl

[11] R. Tijdeman, Fraenkel’s conjecture for six sequences. Discrete Math. 222 (2000), 223–234. | MR | Zbl

Cited by Sources: