Let be a finite subset of an abelian group and let be a closed half-plane of the complex plane, containing zero. We show that (unless possesses a special, explicitly indicated structure) there exists a non-trivial Fourier coefficient of the indicator function of which belongs to . In other words, there exists a non-trivial character such that .
Soit un sous-ensemble fini d’un groupe abélien et un demi-plan fermé du plan complexe contenant zéro. Nous montrons qu’il existe un coefficient de Fourier non-trivial de la fonction indicatrice de qui appartient à (si ne possède pas une structure spéciale explicite). Autrement dit, il existe un caractère non-trivial tel que .
@article{JTNB_2004__16_3_587_0, author = {Sergei V. Konyagin and Vsevolod F. Lev}, title = {Character sums in complex half-planes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {587--606}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {3}, year = {2004}, doi = {10.5802/jtnb.463}, mrnumber = {2144960}, zbl = {1068.43004}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.463/} }
TY - JOUR AU - Sergei V. Konyagin AU - Vsevolod F. Lev TI - Character sums in complex half-planes JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 587 EP - 606 VL - 16 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.463/ DO - 10.5802/jtnb.463 LA - en ID - JTNB_2004__16_3_587_0 ER -
%0 Journal Article %A Sergei V. Konyagin %A Vsevolod F. Lev %T Character sums in complex half-planes %J Journal de théorie des nombres de Bordeaux %D 2004 %P 587-606 %V 16 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.463/ %R 10.5802/jtnb.463 %G en %F JTNB_2004__16_3_587_0
Sergei V. Konyagin; Vsevolod F. Lev. Character sums in complex half-planes. Journal de théorie des nombres de Bordeaux, Volume 16 (2004) no. 3, pp. 587-606. doi : 10.5802/jtnb.463. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.463/
[1] J. Bourgain, Sur le minimum d’une somme de cosinus, [On the minimum of a sum of cosines]. Acta Arithmetica 45 (4) (1986), 381–389. | MR | Zbl
[2] A.S. Belov, S.V. Konyagin, On the conjecture of Littlewood and minima of even trigonometric polynomials. Harmonic analysis from the Pichorides viewpoint (Anogia, 1995), 1–11, Publ. Math. Orsay, 96-01, Univ. Paris XI, Orsay, 1996. | MR | Zbl
[3] S.V. Konyagin, On the Littlewood problem Izv. Akad. Nauk SSSR Ser. Mat. 45 (2) (1981), 243–265. (English translation: Mathematics of the USSR - Izvestiya 45 (2) (1982), 205–225.) | MR | Zbl
[4] S.V. Konyagin, V. Lev, On the distribution of exponential sums. Integers 0 (2000), #A1 (electronic). | MR | Zbl
[5] O.C. McGehee, L. Pigno, B. Smith, Hardy’s inequality and the Littlewood conjecture. Bull. Amer. Math. Soc. (N.S.) 5 (1) (1981), 71–72. | MR | Zbl
[6] O.C. McGehee, L. Pigno, B. Smith, Hardy’s inequality and the norm of exponential sums. Annals of Mathematics (2) 113 (3) (1981), 613–618. | MR | Zbl
Cited by Sources: