Normal integral bases for Emma Lehmer’s parametric family of cyclic quintics
Journal de Théorie des Nombres de Bordeaux, Volume 16 (2004) no. 1, pp. 215-220.

Explicit normal integral bases are given for some cyclic quintic fields defined by Emma Lehmer’s parametric family of quintics.

Nous donnons des bases normales entières explicites pour des extensions cycliques quintiques définies par la famille paramétrée de quintiques d’Emma Lehmer.

Published online:
DOI: 10.5802/jtnb.443
Blair K. Spearman 1; Kenneth S. Williams 2

1 Department of Mathematics and Statistics Okanagan University College Kelowna, B.C. Canada V1V 1V7
2 School of Mathematics and Statistics Carleton University Ottawa, Ontario, Canada K1S 5B6
@article{JTNB_2004__16_1_215_0,
     author = {Blair K. Spearman and Kenneth S. Williams},
     title = {Normal integral bases for {Emma} {Lehmer{\textquoteright}s} parametric family of cyclic quintics},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {215--220},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {1},
     year = {2004},
     doi = {10.5802/jtnb.443},
     zbl = {02184641},
     mrnumber = {2145582},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.443/}
}
TY  - JOUR
TI  - Normal integral bases for Emma Lehmer’s parametric family of cyclic quintics
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2004
DA  - 2004///
SP  - 215
EP  - 220
VL  - 16
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.443/
UR  - https://zbmath.org/?q=an%3A02184641
UR  - https://www.ams.org/mathscinet-getitem?mr=2145582
UR  - https://doi.org/10.5802/jtnb.443
DO  - 10.5802/jtnb.443
LA  - en
ID  - JTNB_2004__16_1_215_0
ER  - 
%0 Journal Article
%T Normal integral bases for Emma Lehmer’s parametric family of cyclic quintics
%J Journal de Théorie des Nombres de Bordeaux
%D 2004
%P 215-220
%V 16
%N 1
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.443
%R 10.5802/jtnb.443
%G en
%F JTNB_2004__16_1_215_0
Blair K. Spearman; Kenneth S. Williams. Normal integral bases for Emma Lehmer’s parametric family of cyclic quintics. Journal de Théorie des Nombres de Bordeaux, Volume 16 (2004) no. 1, pp. 215-220. doi : 10.5802/jtnb.443. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.443/

[1] V. Acciaro and C. Fieker, Finding normal integral bases of cyclic number fields of prime degree. J. Symbolic Comput. 30 (2000), 239–252. | MR | Zbl

[2] I. Gaál and M. Pohst, Power integral bases in a parametric family of totally real cyclic quintics. Math. Comp. 66 (1997), 1689–1696. | MR | Zbl

[3] S. Jeannin, Nombre de classes et unités des corps de nombres cycliques quintiques d’ E. Lehmer. J. Théor. Nombres Bordeaux 8 (1996), 75–92. | Numdam | MR | Zbl

[4] E. Lehmer, Connection between Gaussian periods and cyclic units. Math. Comp. 50 (1988), 535–541. | MR | Zbl

[5] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Springer - Verlag, Berlin 1990. | MR | Zbl

[6] R. Schoof and L. C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comp. 50 (1988), 543–556. | MR | Zbl

[7] B. K. Spearman and K. S. Williams, The discriminant of a cyclic field of odd prime degree. Rocky Mountain J. Math. To appear. | MR | Zbl

Cited by Sources: