Modularity of p-adic Galois representations via p-adic approximations
Journal de Théorie des Nombres de Bordeaux, Volume 16 (2004) no. 1, pp. 179-185.

In this short note we give a new approach to proving modularity of p-adic Galois representations using a method of p-adic approximations. This recovers some of the well-known results of Wiles and Taylor in many, but not all, cases. A feature of the new approach is that it works directly with the p-adic Galois representation whose modularity is sought to be established. The three main ingredients are a Galois cohomology technique of Ramakrishna, a level raising result due to Ribet, Diamond, Taylor, and a mod p n version of Mazur’s principle for level lowering.

Dans cette courte note, nous donnons une nouvelle approche pour prouver la modularité des représentations galoisiennes p-adiques en utilisant une méthode d’approximations p-adiques. Cela englobe quelques uns des résultats bien connus de Wiles et Taylor dans de nombreux cas mais pas tous. Une caractéristique de cette nouvelle approche est qu’elle travaille directement avec la représentation galoisienne p-adique dont on cherche à établir la modularité. Les trois ingrédients essentiels sont une technique de cohomologie galoisienne de Ramakrishna, un résultat de montée de niveau de Ribet, Diamond, Taylor et une version mod p n du principe de descente de niveau de Mazur.

Published online:
DOI: 10.5802/jtnb.440
@article{JTNB_2004__16_1_179_0,
     author = {Chandrashekhar Khare},
     title = {Modularity of $p$-adic {Galois} representations via $p$-adic approximations},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {179--185},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {1},
     year = {2004},
     doi = {10.5802/jtnb.440},
     mrnumber = {2145579},
     zbl = {1082.11030},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.440/}
}
TY  - JOUR
TI  - Modularity of $p$-adic Galois representations via $p$-adic approximations
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2004
DA  - 2004///
SP  - 179
EP  - 185
VL  - 16
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.440/
UR  - https://www.ams.org/mathscinet-getitem?mr=2145579
UR  - https://zbmath.org/?q=an%3A1082.11030
UR  - https://doi.org/10.5802/jtnb.440
DO  - 10.5802/jtnb.440
LA  - en
ID  - JTNB_2004__16_1_179_0
ER  - 
%0 Journal Article
%T Modularity of $p$-adic Galois representations via $p$-adic approximations
%J Journal de Théorie des Nombres de Bordeaux
%D 2004
%P 179-185
%V 16
%N 1
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.440
%R 10.5802/jtnb.440
%G en
%F JTNB_2004__16_1_179_0
Chandrashekhar Khare. Modularity of $p$-adic Galois representations via $p$-adic approximations. Journal de Théorie des Nombres de Bordeaux, Volume 16 (2004) no. 1, pp. 179-185. doi : 10.5802/jtnb.440. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.440/

[DT] F. Diamond, R. Taylor, Lifting modular mod l representations. Duke Math. J. 74 no. 2 (1994), 253–269. | MR | Zbl

[K1] C. Khare, Limits of residually irreducible p-adic Galois representations. Proc. Amer. Math. Soc. 131 (2003), 1999–2006. | MR | Zbl

[K] C. Khare, On isomorphisms between deformation rings and Hecke rings. To appear in Inventiones mathematicae, preprint available at | MR | Zbl

[KR] C. Khare, R. Ramakrishna, Finiteness of Selmer groups and deformation rings. To appear in Inventiones mathematicae, preprint available at | MR | Zbl

[R] R. Ramakrishna, Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur. Annals of Math. 156 (2002), 115–154. | MR | Zbl

[Ri] K. Ribet, Report on mod representations of Gal(Q ¯/Q). In Motives, Proc. Sympos. Pure Math. 55, part 2 (1994), 639–676. | MR | Zbl

[T] R. Taylor, On icosahedral Artin representations II. To appear in American J. of Math. | MR | Zbl

[TW] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), 553–572. | MR | Zbl

[W] A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. 141 (1995), 443–551. | MR | Zbl

Cited by Sources: