On the distribution of the number of distinct generators of $h$-free and $h$-full elements in an abelian monoid
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 1041-1081

This work introduces the first in-depth study of $h$-free and $h$-full elements in abelian monoids, providing a unified approach for understanding their role in various mathematical structures. Let $\mathfrak{m}$ be an element of an abelian monoid, with $\omega (\mathfrak{m})$ denoting the number of distinct prime elements generating $\mathfrak{m}$. We study the moments of $\omega (\mathfrak{m})$ over subsets of $h$-free and $h$-full elements, establishing the normal order of $\omega (\mathfrak{m})$ within these subsets. Our findings are then applied to number fields, global function fields, and geometrically irreducible projective varieties, demonstrating the broad relevance of this approach.

Ce travail présente la première étude approfondie des éléments $h$-free et $h$-full dans les monoïdes abéliens, offrant une approche unifiée pour comprendre leur rôle dans diverses structures mathématiques. Soit $\mathfrak{m}$ un élément d’un monoïde abélien, avec $\omega (\mathfrak{m})$ désignant le nombre d’éléments premiers distincts engendrant $\mathfrak{m}$. Nous étudions les moments de $\omega (\mathfrak{m})$ sur des sous-ensembles d’éléments $h$-free et $h$-full, établissant l’ordre normal de $\omega (\mathfrak{m})$ au sein de ces sous-ensembles. Nos résultats sont ensuite appliqués aux corps de nombres, aux corps de fonctions globaux et aux variétés projectives géométriquement irréductibles, mettant en évidence la portée étendue de cette approche.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1351
Classification : 11N80, 11K65, 20M32
Keywords: the omega function, abelian monoids, the first moment, the second moment, normal order, $h$-free elements, $h$-full elements

Sourabhashis Das 1 ; Wentang Kuo 1 ; Yu-Ru Liu 1

1 Department of Pure Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_3_1041_0,
     author = {Sourabhashis Das and Wentang Kuo and Yu-Ru Liu},
     title = {On the distribution of the number of distinct generators of $h$-free and $h$-full elements in an abelian monoid},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1041--1081},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {3},
     doi = {10.5802/jtnb.1351},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1351/}
}
TY  - JOUR
AU  - Sourabhashis Das
AU  - Wentang Kuo
AU  - Yu-Ru Liu
TI  - On the distribution of the number of distinct generators of $h$-free and $h$-full elements in an abelian monoid
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 1041
EP  - 1081
VL  - 37
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1351/
DO  - 10.5802/jtnb.1351
LA  - en
ID  - JTNB_2025__37_3_1041_0
ER  - 
%0 Journal Article
%A Sourabhashis Das
%A Wentang Kuo
%A Yu-Ru Liu
%T On the distribution of the number of distinct generators of $h$-free and $h$-full elements in an abelian monoid
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 1041-1081
%V 37
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1351/
%R 10.5802/jtnb.1351
%G en
%F JTNB_2025__37_3_1041_0
Sourabhashis Das; Wentang Kuo; Yu-Ru Liu. On the distribution of the number of distinct generators of $h$-free and $h$-full elements in an abelian monoid. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 1041-1081. doi: 10.5802/jtnb.1351

[1] Krishnaswami Alladi; Paul Erdős On an additive arithmetic function, Pac. J. Math., Volume 71 (1977) no. 2, pp. 275-294 | MR | DOI

[2] Juan Arévalo Gómez; Matilde Lalín Prime factors with given multiplicity in h-free and h-full polynomials over function fields, Integers, Volume 25 (2025), A9, 37 pages | Zbl | MR

[3] Sourabhashis Das; Ertan Elma; Wentang Kuo; Yu-Ru Liu On the number of irreducible factors with a given multiplicity in function fields, Finite Fields Appl., Volume 92 (2023), 102281, 22 pages | DOI | MR | Zbl

[4] Sourabhashis Das; Wentang Kuo; Yu-Ru Liu A subset generalization of the Erdős-Kac theorem over number fields with applications (2024) (submitted)

[5] Sourabhashis Das; Wentang Kuo; Yu-Ru Liu Distribution of ω(n) over h-free and h-full numbers, Int. J. Number Theory, Volume 21 (2025) no. 03, pp. 715-737 | DOI | Zbl | MR

[6] Sourabhashis Das; Wentang Kuo; Yu-Ru Liu On the number of prime factors with a given multiplicity over h-free and h-full numbers, J. Number Theory, Volume 267 (2025), pp. 176-201 | Zbl | MR

[7] Godfrey H. Hardy; Srinivasa Ramanujan The normal number of prime factors of a number n [Quart. J. Math. 48 (1917), 76–92], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publishing, 2000, pp. 262-275 | MR

[8] Godfrey H. Hardy; Edward M. Wright An introduction to the theory of numbers, Oxford University Press, 2008, xxii+621 pages (revised by D. R. Heath-Brown and J. H. Silverman, with a foreword by Andrew Wiles) | MR | Zbl | DOI

[9] Aleksandar Ivić; Peter Shiu The distribution of powerful integers, Ill. J. Math., Volume 26 (1982) no. 4, pp. 576-590 | MR | Zbl

[10] Rafael Jakimczuk; Matilde Lalín The number of prime factors on average in certain integer sequences, J. Integer Seq., Volume 25 (2022) no. 2, 22.2.3, 15 pages | MR | Zbl

[11] Rafael Jakimczuk; Matilde Lalín Sums of ω(n) and Ω(n) over the k-free parts and k-full parts of some particular sequences, Integers, Volume 22 (2022), A113, 22 pages | MR | Zbl

[12] John Knopfmacher Analytic arithmetic of algebraic function fields, Lecture Notes in Pure and Applied Mathematics, 50, Marcel Dekker, 1979, iii+130 pages | MR | Zbl

[13] John Knopfmacher Abstract analytic number theory, Dover Books on Advanced Mathematics, Dover Publications, 1990, xii+336 pages | MR | Zbl

[14] Matilde Lalín; Zhexing Zhang The number of prime factors in h-free and h-full polynomials over function fields, Publ. Math. Debr., Volume 104 (2024) no. 3-4, pp. 377-421 | Zbl | MR

[15] Edmund Landau Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes, Math. Ann., Volume 56 (1903) no. 4, pp. 645-670 | DOI | MR | Zbl

[16] Edmund Landau Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Chelsea Publishing, 1949, vii+147 pages | MR | Zbl

[17] Yu-Ru Liu A generalization of the Erdős-Kac theorem and its applications, Can. Math. Bull., Volume 47 (2004) no. 4, pp. 589-606 | DOI | MR | Zbl

[18] Yu-Ru Liu A generalization of the Turán theorem and its applications, Can. Math. Bull., Volume 47 (2004) no. 4, pp. 573-588 | DOI | MR | Zbl

[19] Dino Lorenzini An invitation to arithmetic geometry, Graduate Studies in Mathematics, 9, American Mathematical Society, 1996, xvi+397 pages | DOI | MR | Zbl

[20] Michael Rosen Number theory in function fields, Graduate Texts in Mathematics, 210, Springer, 2002, xii+358 pages | DOI | MR | Zbl

Cité par Sources :