On the average size of 3-torsion in class groups of $C_2 \wr H$-extensions
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 1031-1039

The Cohen–Lenstra–Martinet heuristics lead one to conjecture that the average size of the $p$-torsion in class groups of $G$-extensions of a number field is finite. In a 2021 paper, Lemke Oliver, Wang, and Wood proved this conjecture in the case of $p = 3$ for permutation groups $G$ of the form $C_2 \wr H$ for a broad family of permutation groups $H$, including most nilpotent groups. However, their theorem does not apply for some nilpotent groups of interest, such as $H = C_5$. We extend their results to prove that the average size of $3$-torsion in class groups of $C_2 \wr H$-extensions is finite for any nilpotent group $H$.

Les heuristiques de Cohen, Lenstra, et Martinet conduisent à conjecturer que la taille moyenne de la $p$-torsion dans les groupes de classes des $G$-extensions d’un corps de nombres est finie. Dans un article de 2021, Lemke Oliver, Wang et Wood ont démontré cette conjecture dans le cas $p = 3$ pour les groupes de permutations $G$ de la forme $C_2 \wr H$, pour une large famille de groupes de permutations $H$, incluant la plupart des groupes nilpotents. Cependant, leur théorème ne s’applique pas à certains groupes nilpotents d’intérêt, tels que $H = C_5$. Nous étendons leurs résultats afin de montrer que la taille moyenne de la $3$-torsion dans les groupes de classes des $C_2 \wr H$-extensions est finie pour tout groupe nilpotent $H$.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1350
Classification : 11R29
Keywords: Class groups, arithmetic statistics

Jonas Iskander 1 ; Hari R. Iyer 2

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, United States
2 Department of Mathematics, Princeton University, Princeton, NJ 08540, United States
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_3_1031_0,
     author = {Jonas Iskander and Hari R. Iyer},
     title = {On the average size of 3-torsion in class groups of $C_2 \wr H$-extensions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1031--1039},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {3},
     doi = {10.5802/jtnb.1350},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1350/}
}
TY  - JOUR
AU  - Jonas Iskander
AU  - Hari R. Iyer
TI  - On the average size of 3-torsion in class groups of $C_2 \wr H$-extensions
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 1031
EP  - 1039
VL  - 37
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1350/
DO  - 10.5802/jtnb.1350
LA  - en
ID  - JTNB_2025__37_3_1031_0
ER  - 
%0 Journal Article
%A Jonas Iskander
%A Hari R. Iyer
%T On the average size of 3-torsion in class groups of $C_2 \wr H$-extensions
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 1031-1039
%V 37
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1350/
%R 10.5802/jtnb.1350
%G en
%F JTNB_2025__37_3_1031_0
Jonas Iskander; Hari R. Iyer. On the average size of 3-torsion in class groups of $C_2 \wr H$-extensions. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 1031-1039. doi: 10.5802/jtnb.1350

[1] Brandon Alberts The weak form of Malle’s conjecture and solvable groups, Res. Number Theory, Volume 6 (2020) no. 1, 10, 23 pages | Zbl | MR

[2] Manjul Bhargava The density of discriminants of quartic rings and fields, Ann. Math. (2), Volume 162 (2005) no. 2, pp. 1031-1063 | DOI | Zbl

[3] Henri Cohen; Hendrik W. Lenstra Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Lecture Notes in Mathematics), Volume 1068, Springer, 1984, pp. 33-62 | DOI | Zbl | MR

[4] Henri Cohen; Jacques Martinet Étude heuristique des groupes de classes des corps de nombres, J. Reine Angew. Math., Volume 404 (1990), pp. 39-76 | Zbl | MR

[5] Boris Datskovsky; David J. Wright Density of discriminants of cubic extensions, J. Reine Angew. Math., Volume 386 (1988), pp. 116-138 | Zbl | MR

[6] Harold Davenport; Hans Heilbronn On the density of discriminants of cubic fields. II, Proc. R. Soc. Lond., Ser. A, Volume 322 (1971), pp. 405-420 | Zbl | MR

[7] Jürgen Klüners The distribution of number fields with wreath products as Galois groups, Int. J. Number Theory, Volume 8 (2012) no. 3, pp. 845-858 | DOI | Zbl | MR

[8] Jürgen Klüners; Jiuya Wang -torsion bounds for the class group of number fields with an -group as Galois group, Proc. Am. Math. Soc., Volume 150 (2022) no. 7, pp. 2793-2805 | DOI | Zbl | MR

[9] Robert Lemke Oliver; Jiuya Wang; Melanie M. Wood The average size of 3-torsion in class groups of 2-extensions, Forum Math. Pi, Volume 13 (2025), e19, 43 pages | Zbl | MR

[10] Jürgen Neukirch Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 1999 | DOI | Zbl

[11] Lillian B. Pierce; Caroline L. Turnage-Butterbaugh; Melanie M. Wood On a conjecture for -torsion in class groups of number fields: from the perspective of moments, Math. Res. Lett., Volume 28 (2021) no. 2, pp. 575-621 | DOI | Zbl | MR

[12] Weitong Wang; Melanie M. Wood Moments and interpretations of the Cohen–Lenstra–Martinet heuristics, Comment. Math. Helv., Volume 96 (2021) no. 2, pp. 339-387 | Zbl | DOI

Cité par Sources :