The Cohen–Lenstra–Martinet heuristics lead one to conjecture that the average size of the $p$-torsion in class groups of $G$-extensions of a number field is finite. In a 2021 paper, Lemke Oliver, Wang, and Wood proved this conjecture in the case of $p = 3$ for permutation groups $G$ of the form $C_2 \wr H$ for a broad family of permutation groups $H$, including most nilpotent groups. However, their theorem does not apply for some nilpotent groups of interest, such as $H = C_5$. We extend their results to prove that the average size of $3$-torsion in class groups of $C_2 \wr H$-extensions is finite for any nilpotent group $H$.
Les heuristiques de Cohen, Lenstra, et Martinet conduisent à conjecturer que la taille moyenne de la $p$-torsion dans les groupes de classes des $G$-extensions d’un corps de nombres est finie. Dans un article de 2021, Lemke Oliver, Wang et Wood ont démontré cette conjecture dans le cas $p = 3$ pour les groupes de permutations $G$ de la forme $C_2 \wr H$, pour une large famille de groupes de permutations $H$, incluant la plupart des groupes nilpotents. Cependant, leur théorème ne s’applique pas à certains groupes nilpotents d’intérêt, tels que $H = C_5$. Nous étendons leurs résultats afin de montrer que la taille moyenne de la $3$-torsion dans les groupes de classes des $C_2 \wr H$-extensions est finie pour tout groupe nilpotent $H$.
Révisé le :
Accepté le :
Publié le :
Keywords: Class groups, arithmetic statistics
Jonas Iskander 1 ; Hari R. Iyer 2
CC-BY-ND 4.0
@article{JTNB_2025__37_3_1031_0,
author = {Jonas Iskander and Hari R. Iyer},
title = {On the average size of 3-torsion in class groups of $C_2 \wr H$-extensions},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {1031--1039},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {3},
doi = {10.5802/jtnb.1350},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1350/}
}
TY - JOUR AU - Jonas Iskander AU - Hari R. Iyer TI - On the average size of 3-torsion in class groups of $C_2 \wr H$-extensions JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 1031 EP - 1039 VL - 37 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1350/ DO - 10.5802/jtnb.1350 LA - en ID - JTNB_2025__37_3_1031_0 ER -
%0 Journal Article %A Jonas Iskander %A Hari R. Iyer %T On the average size of 3-torsion in class groups of $C_2 \wr H$-extensions %J Journal de théorie des nombres de Bordeaux %D 2025 %P 1031-1039 %V 37 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1350/ %R 10.5802/jtnb.1350 %G en %F JTNB_2025__37_3_1031_0
Jonas Iskander; Hari R. Iyer. On the average size of 3-torsion in class groups of $C_2 \wr H$-extensions. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 1031-1039. doi: 10.5802/jtnb.1350
[1] The weak form of Malle’s conjecture and solvable groups, Res. Number Theory, Volume 6 (2020) no. 1, 10, 23 pages | Zbl | MR
[2] The density of discriminants of quartic rings and fields, Ann. Math. (2), Volume 162 (2005) no. 2, pp. 1031-1063 | DOI | Zbl
[3] Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Lecture Notes in Mathematics), Volume 1068, Springer, 1984, pp. 33-62 | DOI | Zbl | MR
[4] Étude heuristique des groupes de classes des corps de nombres, J. Reine Angew. Math., Volume 404 (1990), pp. 39-76 | Zbl | MR
[5] Density of discriminants of cubic extensions, J. Reine Angew. Math., Volume 386 (1988), pp. 116-138 | Zbl | MR
[6] On the density of discriminants of cubic fields. II, Proc. R. Soc. Lond., Ser. A, Volume 322 (1971), pp. 405-420 | Zbl | MR
[7] The distribution of number fields with wreath products as Galois groups, Int. J. Number Theory, Volume 8 (2012) no. 3, pp. 845-858 | DOI | Zbl | MR
[8] -torsion bounds for the class group of number fields with an -group as Galois group, Proc. Am. Math. Soc., Volume 150 (2022) no. 7, pp. 2793-2805 | DOI | Zbl | MR
[9] The average size of -torsion in class groups of -extensions, Forum Math. Pi, Volume 13 (2025), e19, 43 pages | Zbl | MR
[10] Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 1999 | DOI | Zbl
[11] On a conjecture for -torsion in class groups of number fields: from the perspective of moments, Math. Res. Lett., Volume 28 (2021) no. 2, pp. 575-621 | DOI | Zbl | MR
[12] Moments and interpretations of the Cohen–Lenstra–Martinet heuristics, Comment. Math. Helv., Volume 96 (2021) no. 2, pp. 339-387 | Zbl | DOI
Cité par Sources :